B站小土堆Pytorch视频学习——损失函数+反向传播(2023.06.15)

一、图解

在这里插入图片描述

二、L1Loss和MSELoss

import torch
from torch.nn import L1Loss
from torch import nn
input=torch.tensor([1,2,3],dtype=torch.float)
target=torch.tensor([1,2,5],dtype=torch.float)
input=torch.reshape(input,(1,1,1,3))
target=torch.reshape(target,(1,1,1,3))
loss=L1Loss(reduction="sum")
loss2=nn.MSELoss()
resultmse=loss2(input,target)
result=loss(input,target)
print(result)
print(resultmse)

三、交叉熵

在这里插入图片描述

x=torch.tensor([0.1,0.2,0.3])
y=torch.tensor([1])
x=torch.reshape(x,(1,3))#3指的是几类,具体去官网看参数要求。
loss_cross=nn.CrossEntropyLoss()
result_cross=loss_cross(x,y)
print(result_cross)

四、用上节课的神经网络测试

import torchvision
from torch import nn as nn
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
data_loader=DataLoader(dataset=dataset,batch_size=1)
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        self.model1=nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )
    def forward(self,x):
        x=self.model1(x)
        return x
loss=nn.CrossEntropyLoss()

tudui=Tudui()
for data in data_loader:
    imgs,targets=data
    outputs=tudui(imgs)
    result=loss(outputs,targets)
    print(result)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值