灰狼算法优化ELM分类器与Matlab实现
近年来,深度学习技术在许多领域取得显著的成绩。由于深度神经网络模型的复杂性和计算量大,因此如何提高其训练效率成为研究的热点之一。极限学习机(ELM)是一种快速而有效的浅层神经网络模型,它在数据分类、回归和其他任务中都具有良好的表现。
本文提出了一种基于灰狼算法的改进ELM分类器,并使用Matlab进行了实现。灰狼算法是一种新兴的全局优化算法,它通过模拟灰狼个体的社会行为来实现对优化问题的求解。改进后的ELM分类器将灰狼算法应用于参数调整中,以提高ELM模型的精度和泛化能力。
以下是基于Matlab实现的灰狼算法优化ELM分类器的核心代码:
function [best,Predict_Y] = WELM_train(train_data,test_data