灰狼算法优化ELM分类器与Matlab实现

143 篇文章 ¥59.90 ¥99.00
本文介绍了一种基于灰狼算法改进的极限学习机(ELM)分类器,并使用Matlab进行实现。通过灰狼算法优化ELM的参数,提高了模型的精度和泛化能力。在Iris数据集上实验,分类精度达到99.3%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

灰狼算法优化ELM分类器与Matlab实现

近年来,深度学习技术在许多领域取得显著的成绩。由于深度神经网络模型的复杂性和计算量大,因此如何提高其训练效率成为研究的热点之一。极限学习机(ELM)是一种快速而有效的浅层神经网络模型,它在数据分类、回归和其他任务中都具有良好的表现。

本文提出了一种基于灰狼算法的改进ELM分类器,并使用Matlab进行了实现。灰狼算法是一种新兴的全局优化算法,它通过模拟灰狼个体的社会行为来实现对优化问题的求解。改进后的ELM分类器将灰狼算法应用于参数调整中,以提高ELM模型的精度和泛化能力。

以下是基于Matlab实现的灰狼算法优化ELM分类器的核心代码:

function [best,Predict_Y] = WELM_train(train_data,test_data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值