safetensor存取pytorch模型参数、玄数据简例

safetensors [1] 号称提供一种更安全的存数据方式,支持多种框架,见 [2]。不过在处理玄数据(metadata)时:

  • 只支持 Dict[str, str] 的形式,即值必须是字符串,而不能是 int、float 或嵌套 dict,而这些在 PyTorch 原先的 torch.save、torch.load 是支持的。考虑用 json.dumps 将 dict 转写成字符串,读时则用 json.loads 恢复回 dict。
  • 没有专门从 checkpoint 文件读出 metadata 的方法。考虑采用 [3] 中 Ok_Storage_1799 的回答所讲利用 safetensors.safe_open 的方法读 metadata。

下面是存、取 PyTorch 模型参数、metadata 的简例:

import time, json, pprint
import torch
from safetensors import safe_open # to read metadata
from safetensors.torch import save_model, load_model

print("建模型")
model = torch.nn.Linear(2, 3)
# 初始参数值
for pn, p in model.named_parameters():
    print(pn, p)


print("存模型、metadata")
# 将模型参数置零 (模拟 training)
for p in model.parameters():
    p.data.zero_()
# 存模型
save_model(
    model,
    "ckpt.safetensors",
    # metadata 用 json 转写成 str
    {"metadata": json.dumps({
        "time": time.asctime(),
        "epoch": 57,
        "acc": 0.56,
        "args": {
            "debug": False,
            "dataset": "MNIST",
            "decay_steps": [10, 20]
        }
    })}
)


print("读模型")
load_model(model, "ckpt.safetensors")
# 验证更新(置零)后参数值
for pn, p in model.named_parameters():
    print(pn, p)


print("读 metadata")
with safe_open("ckpt.safetensors", framework="pt") as f:
    print(type(f), dir(f))
    print(list(f.keys())) # 模型参数的名字
    print(type(f.metadata())) # dict
    for k, v in f.metadata().items():
        print(k, v)
        # 用 json 恢复 metadata 成 dict
        if "metadata" == k:
            metadata = json.loads(v)

    pprint.pprint(metadata)

References

  1. huggingface/safetensors
  2. Python documentation
  3. How to get metadata from a safetensor file?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值