机器学习——垃圾分类

贝叶斯算法

朴素贝叶斯是一种基于贝叶斯定理和特征条件独立假设的分类算法。它假设给定类别的特征之间相互独立,并利用特征的条件概率来进行分类。朴素贝叶斯算法在文本分类、垃圾邮件过滤、情感分析等领域有广泛应用。贝叶斯定理是概率论中的一个重要定理,用于计算条件概率。在朴素贝叶斯算法中,我们通常使用多维正态分布来描述特征的概率分布。对于一个待分类的样本,该算法会计算其在每个类别下的条件概率,然后选择条件概率最高的类别作为最终的分类结果。虽然在一些情况中,可能由于数据集的假设特征均为相互独立,朴素贝叶斯算法对于他们可能会表现不佳,但在实际应用中,朴素贝叶斯算法在许多领域仍具有较好的分类性能。

贝叶斯算法的公式为:P(A|B) = P(B|A) * P(A) / P(B)
其中,P(A|B) 表示在已知事件 B 发生的情况下,事件 A 发生的概率;P(B|A) 表示在已知事件 A 发生的情况下,事件 B 发生的概率;P(A) 和 P(B) 分别表示事件 A 和事件 B 发生的概率。

垃圾分类

基于贝叶斯算法我们时间一个垃圾邮件分类的例子,其中大体思路如下:

(1)收集数据:提供文本文件。

(2)准备数据:将文本文件解析成词条向量。

(3)分析数据:检查词条确保解析的正确性。

(4)训练算法:计算不同的独立特征的条件概率。

(5)测试算法:计算错误率。

(6)使用算法:构建一个完整的程序对一组文档进行分类。

代码如下:


import os
import re
import string
import math
 
DATA_DIR = 'enron'
target_names = ['ham', 'spam']
 
 
def get_data(DATA_DIR):
    subfolders = ['enron%d' % i for i in range(1, 7)]
    data = []
    target = []   #目录
    for subfolder in subfolders:
        # spam
        spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
        for spam_file in spam_files:
            with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(1)    #list.append()函数数组增加元素
        # ham
        ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
        for ham_file in ham_files:
            with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
                data.append(f.read())          #读入数据
                target.append(0)
    return data, target
 
 
X, y = get_data(DATA_DIR)
 
 
class SpamDetector_1(object):
    """Implementation of Naive Bayes for binary classification"""
 
    # 清除空格
    def clean(self, s):
        translator = str.maketrans("", "", string.punctuation)
        return s.translate(translator)
 
    # 分开每个单词
    def tokenize(self, text):
        text = self.clean(text).lower()
        return re.split("\W+", text)
 
    # 计算某个单词出现的次数
    def get_word_counts(self, words):
        word_counts = {}
        for word in words:
            word_counts[word] = word_counts.get(word, 0.0) + 1.0
        return word_counts
 
 
class SpamDetector_2(SpamDetector_1):
    # X:data,Y:target标签(垃圾邮件或正常邮件)
    def fit(self, X, Y):
        self.num_messages = {}
        self.log_class_priors = {}
        self.word_counts = {}
        # 建立一个集合存储所有出现的单词
        self.vocab = set()
        # 统计spam和ham邮件的个数
        self.num_messages['spam'] = sum(1 for label in Y if label == 1)
        self.num_messages['ham'] = sum(1 for label in Y if label == 0)
 
        # 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
        self.log_class_priors['spam'] = math.log(
            self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
        self.log_class_priors['ham'] = math.log(
            self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))
 
        self.word_counts['spam'] = {}
        self.word_counts['ham'] = {}
 
        for x, y in zip(X, Y):
            c = 'spam' if y == 1 else 'ham'
            # 构建一个字典存储单封邮件中的单词以及其个数
            counts = self.get_word_counts(self.tokenize(x))
            for word, count in counts.items():
                if word not in self.vocab:
                    self.vocab.add(word)  # 确保self.vocab中含有所有邮件中的单词
                # 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
                # c是0或1,垃圾邮件的标签
                if word not in self.word_counts[c]:
                    self.word_counts[c][word] = 0.0
                self.word_counts[c][word] += count
 
 
MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])
 
 
class SpamDetector(SpamDetector_2):
    def predict(self, X):
        result = []
        flag_1 = 0
        # 遍历所有的测试集
        for x in X:
            counts = self.get_word_counts(self.tokenize(x))  # 生成可以记录单词以及该单词出现的次数的字典
            spam_score = 0
            ham_score = 0
            flag_2 = 0
            for word, _ in counts.items():
                if word not in self.vocab:
                    continue
 
                # 下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
                else:
                    # 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                        sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
                    # 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                        sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
                            self.vocab)))
                    # 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
                    if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
 
                # 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
                spam_score += log_w_given_spam
                ham_score += log_w_given_ham
 
                flag_2 += 1
 
                # 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
                spam_score += self.log_class_priors['spam']
                ham_score += self.log_class_priors['ham']
 
            # 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
            if spam_score > ham_score:
                result.append(1)
            else:
                result.append(0)
 
            flag_1 += 1
 
        return result
 
 
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]
 
accuracy = 0
for i in range(100):
    if pred[i] == true[i]:
        accuracy += 1
print(accuracy) 

运行结果如下:

总结

 贝叶斯算法是一种基于概率论和统计学的机器学习方法,以其在处理不确定性和分类问题方面的能力而著名。它的优点有:
1. 处理不确定性:贝叶斯方法能够处理不确定性和概率推断问题,适用于各种领域,如自然语言处理、模式识别、图像识别等。
2. 灵活性:贝叶斯算法可以根据不同的应用场景和问题进行调整,如朴素贝叶斯、高斯朴素贝叶斯、多项式分布下的朴素贝叶斯等。
4. 易于理解和实现:贝叶斯算法的原理相对简单,易于理解和实现。
5. 对缺失数据不敏感:贝叶斯算法对缺失数据的处理相对较好,可以通过概率推断来估计缺失值。
缺点:
1. 计算复杂度高:贝叶斯算法中涉及到的概率计算和积分运算可能导致计算复杂度高,尤其是在处理大规模数据时。
2. 需要大量的训练数据:贝叶斯算法对于小规模数据的表现可能不佳,因为它们需要足够的数据来估计概率分布。
3. 模型选择和参数调优:贝叶斯算法中涉及到的模型选择(如朴素贝叶斯中的多项式分布、高斯分布等)和参数调优可能导致算法性能的波动。
4. 过拟合问题:贝叶斯算法也可能出现过拟合问题,尤其是在处理高维数据时。
5. 增量式训练限制:与其他机器学习算法相比,贝叶斯算法的增量式训练性能较差。
总之,贝叶斯算法具有扎实的理论基础和较强的处理不确定性的能力,但在计算复杂度、数据规模要求、模型选择和训练性能方面存在一定的局限性。在实际应用中,需要根据具体问题和场景来评估贝叶斯算法的适用性。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值