transformers BERT等模型在自己的数据集上fine-tune方法

预训练语言模型在具体任务上效果可能一般,在自己语料上再次fine-tune可提升效果。本文针对PyTorch的transformers库模型,介绍fine-tune基本方法,给出官方代码链接,还补充说明需将语料弄成文本文件及解决“datasets”库找不到的问题。

Intro

BERT等预训练语言模型能力很强,但官方发布的模型在预训练时用的语料并不一定与你具体任务的语料相似,因此可能造成具体任务上的效果一般。这时候,将预训练语言模型在你自己的语料上再次fine-tune(Masked Language Model等任务),能够进一步提升效果。本文将介绍fine-tune的基本方法。
本文针对PyTorch的库transformers的模型。

方法

Transformers官方很贴心的提供了代码,只要运行就行了。代码和说明在这里(https://github.com/huggingface/transformers/tree/master/examples/language-modeling)。
官方说明还算清晰易懂,需要补充说明的是以下:

  • 自己的语料弄成文本文件。如果是多个句子/段落,可以弄成一行一个,在运行时添加--line_by_line参数。如果不加这个参数,脚本会将所有内容按照固定长度切分。
  • 可能会报错“datasets”库找不到,pip安装就行。

以上。

Fine - tune数据指的是用于模型微调(fine - tune)阶段的数据集。微调是通过使用在大数据上得到的预训练好的模型来初始化自己的模型权重,进而提升模型在特定场景和任务中的精度的方法,这就要求预训练模型质量要有保证。Fine - tune数据的作用是让模型在预训练的基础上,进一步学习特定场景、特定任务的数据特征,从而使模型适用于自己的场景和任务[^1]。 例如在文本分类任务中,对于在通用语料库中预训练的BERT模型,在进行特定领域(如电影评论)的文本分类任务时,由于该领域数据分布可能与BERT预训练时不同,就需要使用该领域特定的数据作为Fine - tune数据,对BERT模型进行进一步训练,让模型适应电影评论这个特定领域的文本分类任务。可以采用任务内的预训练(在目标任务的训练数据上进一步预训练)、领域内的预训练(预训练数据从目标任务的相同领域获得)、跨领域预训练(预训练数据从目标任务的相同和其他不同领域获得)等方式来利用Fine - tune数据进行微调[^2]。 ```python # 示意使用Fine - tune数据进行微调 import torch from transformers import BertForSequenceClassification, BertTokenizer # 加载预训练模型和分词器 model = BertForSequenceClassification.from_pretrained('bert-base-uncased') tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # 假设fine_tune_data是处理好的Fine - tune数据 fine_tune_data = [...] # 这里简单示意将数据转为模型可接受的输入 inputs = tokenizer(fine_tune_data, return_tensors='pt', padding=True, truncation=True) # 进行微调训练 optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) model.train() for _ in range(num_epochs): outputs = model(**inputs) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值