最短路径问题:Dijkstra算法原理和证明

一、问题

最短路径问题:从一个有向图(或无向图)的某个顶点s出发,求到达其他任意一个顶点所经过的边的权重之和最小的路径。权重之和称为两个顶点之间的距离(距离均为正数)。
我们以无向图为例(顶点之间没有方向),每条边的权重可以使用权重矩阵W来描述,如有n个顶点,则权重矩阵大小为 n*n,W(i,j)为顶点i和j的直接相连的边的权重,如果没有直接相连,则赋值为无穷大。权重矩阵为对称矩阵。

二、算法

1、算法介绍
     Dijkstra算法与深度优先搜索类似,使用了贪心的思想,从一个顶点出发,每次查询所关联到的顶点的最短路径。
2、算法步骤
(1)定义变量:
定义一个数组dist,dist[m]表示顶点s到顶点m的最短距离。(在迭代过程中,里面的值可能不是最终最短距离,但是是当前考虑到已经扫描到的边的最短距离)
定义一个集合T,里面存放着已经查询到最终最短路径的顶点集合。
(2)初始化:
任取顶点 i,如果 s 和 i 直接相连,则dist[i]=W(s,i),否则 W(s, i) 为无穷大。
T 集合只包含顶点 s。
(3)迭代:
A、从dist中找到最小值(除去集合 T 中包含的点),记为 dist[r]=d,然后将顶点 r 划入到集合 T 中。
B、对于每一个不属于集合 T 的点,比如顶点 q, 查看新加入的顶点 r 是否可以直接到达顶点 q,如果是,则比较通过顶点 r 到达顶点 q 的路径长度和当前的dist[q]值,然后取较小值,即 dist[q] := min(dist[r]+W(r, q), dist[q])
C、跳回到步骤A,直到所有的点都进入到了集合 T。
D、dist 中存放的值即为每个点的最终最短路径。

三、演示


有4个点,A 为起点,要求从 A 分别到 B、C、D的最短路径。
1、初始化变量:
dist = [9, 4, ∞],分别表示从源点到 B、C、D点的最短路径。
T = {A}
2、迭代:
(1)从dist不属于T的值中{9,4,∞}选一个最小值为4,对应点C,因此 T = {A,C}。
所有不属于集合T的点包括B、D。新加入的 C 可以直接到达 B,则 dist[B] := min(4+3,9)=7 ;新加入的 C 可以直接到达 D,则 dist[D] := min(4+1,∞)=5。因此 dist=[7,4,5]
(2)从dist不属于T的值中{9,5}选一个最小值为5,对应点D,因此 T = {A,C,D}
所有不属于集合T的点包括B。新加入的 D 可以直接到达 B,则 dist[B] := min(5+1,7)=6。因此 dist=[6,4,5]
(3)不属于T的只剩下B了, 直接加入到T即可。
(4)根据dist的值,从A点到B、C、D点的最短路径分别为:6、4、5

四、证明

推论1、如果只考虑集合 T 中包含的点,那么步骤A中 d 就是顶点 s 到 顶点 r 的最短距离(只考虑集合 T 的范围内的路径)。
证明:递归法证明:
(1)在第一次迭代中,dist初始化为直接与 s 相连的边的权重,明显最小权重的边连接的那个点为 s 到此点的最短距离。
(2)假如已经迭代完第 i 次,T 中包含了 i 个顶点(除了顶点s),dist 中包含了 i 个最终最短距离(还有其他不是无穷大的数值,但是不一定是最终最短距离),那么第 i+1 次的步骤A需要从 dist 中挑出除去这 i 个最短距离外的最小值,比如 dist[r]=d。因为前 i 次每次迭代中步骤B如果扫描到了与点 r 直接相连的点,都会比较一下经过此点到 r 的路径总长与当前已经存放的dist[r]的大小,即:

其中公式右边min内的 dist[r] 为 s 到 r 的直接距离,dist[u] 为集合 T 内 s 到 u 的最终最短距离。此公式恰好是在集合 T 的范围内计算从 s 到 r 的最短距离的方法,因此得证。

推论2、如果 r 点属于集合 T,且存在一个点 t,s.t. 从 s 到 t 的某条路径总长e < dist[r],则 t 点一定也属于集合 T。
证明:不是一般性,我们把从 s 点分别到 t 点和 m 点的路径画出来:

且 s →...→ a → b1 →...→ bn → t 的总长为 e, s →...→ a → c1 →...→ cm → r 的总长为 dist[r]。
我们定义 distance(bi) 为 s →...→ a → b1 →...→ bi 的路径总长,distance(cj) 为 s →...→ a → c1 →...→ cj 的路径总长。
(1)当 e 为 s 到 t 的最短距离时:当集合 T 包含 t 时,一定也包含了 s...a、b1~bn。
因为 r 属于 T,则一定存在某次迭代,s.t.  s 和 a 均包含于集合 T。继续迭代,每次可能会从 b 系列中选取点归入集合 T,可能会从 c 系列中选取点归入集合 T,也可能是其他点。由于 distance(t) = e < dist[r] = distance(r),则一定存在点 ci,1≤i≤m,s.t. distance(ci) ≤ distance(t) 且 distance(c(i+1)) > distance(t)。(记 c(m+1)为r)。因此集合 T 中加入点的次序为 {ci, t} 早于 {c(i+1), r}。因此如果 r 属于集合 T,则 t 一定也属于集合 T,且比 r 先划入到集合 T。
(2)当 s 到 t 的最短距离 < e 时:s 到 t 的最短距离为 g,则 g < e,因此有 g < dist[r]。将 a、b1~bn 变为最短路径上的点,则变为了第(1)种情况。

推论3、步骤A中 d 就是顶点 s 到 顶点 r 的最终最短距离:
证明:假设 d 不是 s 到 r 的最终最短距离,根据推论1可知,s 到 r 的真正最终最短路径一定包含了集合 T 之外的点(记为 t),即 s →...→ t → ...→ r 的总长 < d。因为权重总是为正数,因此 s → ...→ t 的总长 < d,根据推论2可知, t 一定属于 T ,这与 t 不属于集合 T 矛盾。因此 d 是 s 到 r 的最终最短距离。

欢迎关注我的公众号:


  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 最短路径Dijkstra算法是一种用于计算带权有向图中单源最短路径的经典算法。它的基本原理是通过不断更新节点到源节点的距离,从而找到到达目标节点最短的路径。 算法从源节点开始,先将源节点到它的邻接节点的距离初始化为无穷大。然后将源节点到它的邻接节点的距离更新为通过源节点的距离加上源节点到邻接节点的权重。接着,从所有未访问节点中选择距离最小的节点,将该节点标记为已访问,并更新与该节点相邻的节点的距离。重复这个过程,直到所有节点都被访问完毕或没有可更新的距离。最后,就可以得到源节点到所有其他节点的最短路径。 在MATLAB中,可以通过邻接矩阵来实现Dijkstra算法。邻接矩阵是一个二维矩阵,矩阵的每个元素表示两个节点之间的权重。首先,需要初始化一个距离数组,用于存储源节点到其他节点的临时最短路径长度。然后,通过遍历邻接矩阵,将源节点到它的邻接节点的距离初始化为邻接矩阵中对应的权重。接着,再初始化一个标记数组,用于标记节点是否已经被访问过。然后,循环遍历未访问节点,选择距离最小的节点,并将该节点标记为已访问。随后,更新与该节点相邻的节点的距离,如果存在更短的路径。这个过程一直重复,直到所有节点都被访问完毕。最后,通过距离数组就可以得到源节点到其他所有节点的最短路径。 总结来说,最短路径Dijkstra算法能够找到带权有向图中的单源最短路径。在MATLAB中,通过邻接矩阵和相应的数据结构,可以完美地实现这个算法。 ### 回答2: 迪杰斯特拉算法是一种用于求解图上两个节点之间最短路径的经典算法。 其原理如下: 1. 创建一个数组dist[],数组中的元素表示源节点到图中其他顶点的最短距离,开始时将源节点的距离设为0,其他节点的距离设为无穷大。 2. 创建一个集合visited[],用来记录已经找到最短路径的节点。 3. 选择dist[]中距离源节点最近的节点,将其标记为visited,并更新其邻接节点的距离。若经过这个节点到邻接节点的距离比当前记录的距离小,则更新dist[]数组中的距离。 4. 重复第3步,直到所有节点都被标记为visited,或者dist[]中没有未被访问的节点。 5. 最终,dist[]数组中记录了源节点到所有其他节点的最短路径。 在MATLAB中实现迪杰斯特拉算法,可以按照以下步骤进行: 1. 初始化dist[]数组和visited[]数组。 2. 在dist[]数组中将源节点的距离设置为0,其他节点的距离设置为无穷大。 3. 在一个循环中,首先选择dist[]数组中距离源节点最近的节点v,并将其标记为visited。 4. 遍历节点v的所有邻接节点u,如果经过节点v到达节点u的距离比当前记录的距离小,则更新dist[]数组中的距离。 5. 重复步骤3和步骤4,直到所有节点都被标记为visited。 6. 最后,dist[]数组中记录了源节点到其他节点的最短路径。 以上是最短路径迪杰斯特拉算法原理及在MATLAB中的实现方式。该算法在实际应用中被广泛使用,用于解决很多网络和路径规划问题。 ### 回答3: Dijkstra算法是一种用于求解带权重图中最短路径的算法。它通过计算从起点到各个顶点的最短路径长度,并逐步找到最短路径。 算法原理如下: 1. 创建一个空的优先队列和一个空的最短路径集合。优先队列用于存放待搜索的顶点,节点的优先级按照到起点的距离从小到大排列。 2. 将起点加入优先队列,并设置距离起点的距离为0。 3. 重复以下步骤,直至优先队列为空: - 从优先队列中取出距离起点最近的顶点v。 - 将顶点v加入最短路径集合中。 - 对于v的所有邻接顶点u,更新u的最短距离,如果经过顶点v到达u的距离小于当前最短距离,则更新最短距离,并将u加入优先队列。 Matlab实现如下: ```matlab function [dist, path] = dijkstra(graph, source) num_nodes = size(graph, 1); dist = inf(1, num_nodes); % 初始化距离数组,设置为正无穷大 dist(source) = 0; % 设置起点的距离为0 visited = false(1, num_nodes); % 记录节点是否被访问过的数组 path = zeros(1, num_nodes); % 记录最短路径的数组 for i = 1:num_nodes % 从未访问的节点中选出距离最小的节点 [~, u] = min(dist.*~visited); visited(u) = true; % 标记该节点为已访问 % 更新与u相邻节点的最短距离 for v = 1:num_nodes if graph(u, v) > 0 && dist(v) > dist(u) + graph(u, v) dist(v) = dist(u) + graph(u, v); path(v) = u; % 更新最短路径 end end end end ``` 以上是Dijkstra算法的简要原理和用Matlab实现的代码。通过该算法,可以得到从起点到其他各个顶点的最短路径距离和路径信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值