Li_Generative Adversarial Network

该文探讨了一种使用Discriminator监督Generator的生成式网络,目标是使生成网络的分布匹配数据分布。训练过程中,采用交替训练策略并避免使用JS散度,转而选择其他连续距离度量方法,以提升模型创造力和适应复杂函数生成的任务。
摘要由CSDN通过智能技术生成

首先介绍一个生成复杂函数的network:

为什么需要这种generative网络?:因为要应对一些有创造力的工作。

监督网络:

用Discriminator来监督Generator。

流程:反复交替训练。(注意损失函数的标定)

训练理论:

我们要的目标:生成网络对应的分布要符合data distribution。

Divergence的计算:利用sample

训练技巧:

不用JS divergence

用其他的连续性的可以衡量的距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值