首先介绍一个生成复杂函数的network:
为什么需要这种generative网络?:因为要应对一些有创造力的工作。
监督网络:
用Discriminator来监督Generator。
流程:反复交替训练。(注意损失函数的标定)
训练理论:
我们要的目标:生成网络对应的分布要符合data distribution。
Divergence的计算:利用sample
训练技巧:
不用JS divergence
用其他的连续性的可以衡量的距离
首先介绍一个生成复杂函数的network:
为什么需要这种generative网络?:因为要应对一些有创造力的工作。
监督网络:
用Discriminator来监督Generator。
流程:反复交替训练。(注意损失函数的标定)
训练理论:
我们要的目标:生成网络对应的分布要符合data distribution。
Divergence的计算:利用sample
训练技巧:
不用JS divergence
用其他的连续性的可以衡量的距离