P1002 [NOIP2002 普及组] 过河卒

文章讲述了如何使用逆向思维和动态规划解决棋盘上过河卒避开马的路径计数问题,适合IT奥林匹克或数学建模类问题。
摘要由CSDN通过智能技术生成

题目

原题目链接

题目描述
棋盘上 A A A 点有一个过河卒,需要走到目标 B B B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C C C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示, A A A ( 0 , 0 ) (0, 0) (0,0) B B B ( n , m ) (n, m) (n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 A A A 点能够到达 B B B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 B B B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
样例输入 #1
6 6 3 3
样例输出 #1
6
提示
对于 100 % 100 \% 100% 的数据, 1 ≤ n , m ≤ 20 1 \le n, m \le 20 1n,m20 0 ≤ 0 \le 0 马的坐标 ≤ 20 \le 20 20


前言

很奇怪为什么网上的代码都那么麻烦。

首先,这原本就是一个小学的奥数题,(我没学过,但是我差不多二三年级时,无意间旁听懂了),小学二三年级的奥数题逆向思维可以秒解


思路

既然题目说卒只能向下或向右走;那么不妨逆向思维:卒要么可以从上面走过来、要么可以从左边走过来

( 0 , 0 ) (0,0) (0,0)点当然是 1 1 1了。)假如已经算好 x x x种走法到上面那个点 y y y种走法到左边那个点,那么就 x + y x+y x+y种走法到当前这个点

举个例子:先假设没有马,卒从 ( 0 , 0 ) (0,0) (0,0)位置到 ( 10 , 10 ) (10,10) (10,10)位置每个点的走法的数量如下。

1       1       1       1       1       1       1       1       1       1       1
1       2       3       4       5       6       7       8       9       10      11
1       3       6       10      15      21      28      36      45      55      66
1       4       10      20      35      56      84      120     165     220     286
1       5       15      35      70      126     210     330     495     715     1001
1       6       21      56      126     252     462     792     1287    2002    3003
1       7       28      84      210     462     924     1716    3003    5005    8008
1       8       36      120     330     792     1716    3432    6435    11440   19448
1       9       45      165     495     1287    3003    6435    12870   24310   43758
1       10      55      220     715     2002    5005    11440   24310   48620   92378
1       11      66      286     1001    3003    8008    19448   43758   92378   184756

每个点的走法的数量都是到上面和左边两个点的走法的数量的和

那么有马呢,把卒不能去的几个点提前标注出来就够了,如果碰到了标注过的点,就跳过(那么到这个点的走法的数量自然也就为 0 0 0了)。

再举个例子:卒从 ( 0 , 0 ) (0,0) (0,0)位置到 ( 10 , 10 ) (10,10) (10,10)位置,马在 ( 5 , 5 ) (5,5) (5,5)点上。

1       1       1       1       1       1       1       1       1       1       1
1       2       3       4       5       6       7       8       9       10      11
1       3       6       10      15      21      28      36      45      55      66
1       4       10      20      0       21      0       36      81      136     202
1       5       15      0       0       21      21      0       81      217     419
1       6       21      21      21      0       21      21      102     319     738
1       7       28      0       21      21      42      0       102     421     1159
1       8       36      36      0       21      0       0       102     523     1682
1       9       45      81      81      102     102     102     204     727     2409
1       10      55      136     217     319     421     523     727     1454    3863
1       11      66      202     419     738     1159    1682    2409    3863    7726

代码

  1. 框架

    int mian(){
    	
    	return 0;
    }
    

  2. 输入m点的坐标m_xm_y)和马的位置h点的坐标h_xh_y

    #include<cstdio>	//scanf()
    int m_x, m_y, h_x, h_y;
    int main(){
    	scanf("%d %d %d %d", &m_x, &m_y, &h_x, &h_y);
    	return 0;
    }
    

  3. 模拟棋盘(定义一个二维数组),并标出马和马能去的位置(卒不能去的位置

    因为是整形数组,正数用于表示到当前这个点的走法的个数,那么就-1表示这个点卒不能去

    注意到,因为到后面数字会很大,所以记得用long long

    再注意到, ( 0 , 0 ) (0,0) (0,0)点是卒的初始位置,初始值为1

    再再注意到,马能去的位置有可能在棋盘界外;需要判断一下,防止越界。

    #include<cstdio>	//scanf()
    int m_x, m_y, h_x, h_y, p1=1, p2=2;
    long long a[21][21]={1};
    int main(){
    	scanf("%d %d %d %d", &m_x, &m_y, &h_x, &h_y);
    	a[h_x][h_y]=-1;
    	for(int i=0; i<2; i++){
    		p2=-p2;
    		for(int j=0; j<2; j++){
    			if(h_x+p1<0 || h_x+p1>m_x || h_y+p2<0 || h_y+p2>m_y); 
    			else a[h_x+p1][h_y+p2]=-1;
    			if(h_x+p2<0 || h_x+p2>m_x || h_y+p1<0 || h_y+p1>m_y);
    			else a[h_x+p2][h_y+p1]=-1;
    			p1=-p1;
    		}
    	}
    	return 0;
    }
    

  4. 有序地遍历棋盘,求出到当前的走法的数量。

    同样,要注意遍历时数组越界。

    #include<cstdio>	//scanf()
    int m_x, m_y, h_x, h_y, p1=1, p2=2, t;
    long long a[21][21]={1};
    int main(){
    	scanf("%d %d %d %d", &m_x, &m_y, &h_x, &h_y);
    	a[h_x][h_y]=-1;
    	for(int i=0; i<2; i++){
    		p2=-p2;
    		for(int j=0; j<2; j++){
    			if(h_x+p1<0 || h_x+p1>m_x || h_y+p2<0 || h_y+p2>m_y); 
    			else a[h_x+p1][h_y+p2]=-1;
    			if(h_x+p2<0 || h_x+p2>m_x || h_y+p1<0 || h_y+p1>m_y);
    			else a[h_x+p2][h_y+p1]=-1;
    			p1=-p1;
    		}
    	}
    	for(int x=0; x<=m_x; x++){
    		for(int y=0; y<=m_y; y++){
    			t=0;
    			if(a[x-1][y]==-1 || x-1<0);
    			else t+=a[x-1][y];
    			if(a[x][y-1]==-1 || y-1<0);
    			else t+=a[x][y-1];
    			if(a[x][y]==-1);
    			else a[x][y]+=t;
    		}
    	}
    	return 0;
    }
    

  5. 最后,输出终点m的值即可。

    #include<cstdio>	//scanf(), printf()
    int m_x, m_y, h_x, h_y, p1=1, p2=2, t;
    long long a[21][21]={1};
    int main(){
    	scanf("%d %d %d %d", &m_x, &m_y, &h_x, &h_y);
    	a[h_x][h_y]=-1;
    	for(int i=0; i<2; i++){
    		p2=-p2;
    		for(int j=0; j<2; j++){
    			if(h_x+p1<0 || h_x+p1>m_x || h_y+p2<0 || h_y+p2>m_y); 
    			else a[h_x+p1][h_y+p2]=-1;
    			if(h_x+p2<0 || h_x+p2>m_x || h_y+p1<0 || h_y+p1>m_y);
    			else a[h_x+p2][h_y+p1]=-1;
    			p1=-p1;
    		}
    	}
    	for(int x=0; x<=m_x; x++){
    		for(int y=0; y<=m_y; y++){
    			t=0;
    			if(a[x-1][y]==-1 || x-1<0);
    			else t+=a[x-1][y];
    			if(a[x][y-1]==-1 || y-1<0);
    			else t+=a[x][y-1];
    			if(a[x][y]==-1);
    			else a[x][y]+=t;
    		}
    	}
    	printf("%lld", a[m_x][m_y]);
    	return 0;
    }
    


答案

#include<cstdio>
int m_x, m_y, h_x, h_y, p1=1, p2=2, t;
long long a[21][21]={1};
int main(){
	scanf("%d %d %d %d", &m_x, &m_y, &h_x, &h_y);
	a[h_x][h_y]=-1;
	for(int i=0; i<2; i++){
		p2=-p2;
		for(int j=0; j<2; j++){
			if(h_x+p1<0 || h_x+p1>m_x || h_y+p2<0 || h_y+p2>m_y); 
			else a[h_x+p1][h_y+p2]=-1;
			if(h_x+p2<0 || h_x+p2>m_x || h_y+p1<0 || h_y+p1>m_y);
			else a[h_x+p2][h_y+p1]=-1;
			p1=-p1;
		}
	}
	for(int x=0; x<=m_x; x++){
		for(int y=0; y<=m_y; y++){
			t=0;
			if(a[x-1][y]==-1 || x-1<0);
			else t+=a[x-1][y];
			if(a[x][y-1]==-1 || y-1<0);
			else t+=a[x][y-1];
			if(a[x][y]==-1);
			else a[x][y]+=t;
		}
	}
	printf("%lld", a[m_x][m_y]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值