吴恩达深度学习笔记(35)-加快归一化的网络训练方法

归一化输入对于加速神经网络训练至关重要。通过零均值化和方差归一化,可以使得训练数据和测试数据具有相同的μ和σ^2,从而避免训练和测试数据的归一化差异。归一化有助于优化代价函数,使其更加对称,允许使用更大的学习率,从而提高训练效率。当特征值范围不同时,归一化尤为重要,因为它可以使不同特征处于相似的尺度,简化优化问题。即使特征值范围相近,归一化仍然是有益的。下节课将继续探讨更多加速训练的策略。
摘要由CSDN通过智能技术生成

归一化输入(Normalizing inputs)
训练神经网络,其中一个加速训练的方法就是归一化输入。假设一个训练集有两个特征,输入特征为2维,归一化需要两个步骤:

1.零均值
2.归一化方差;

我们希望无论是训练集和测试集都是通过相同的μ和σ^2定义的数据转换,这两个是由训练集得出来的。

在这里插入图片描述
第一步是零均值化
在这里插入图片描述

它是一个向量,x等于每个训练数据 x减去μ,意思是移动训练集,直到它完成零均值化。

在这里插入图片描述
第二步是归一化方差,

注意特征x_1的方差比特征x_2的方差要大得多,我们要做的是给σ赋值

这是节点y 的平方,σ2是一个向量,它的每个特征都有方差,注意,我们已经完成零值均化,(x(i)2元素y2就是方差,我们把所有数据除以向量σ^2,最后变成上图形式。

x_1和x_2的方差都等于1。

提示一下,如果你用它来调整训练数据࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值