Pandas的相关介绍

Pandas 介绍

2008年WesMcKinney开发出的库
专门用于数据挖掘的开源python库
以Numpy为基础,借力Numpy模块在计算方面性能高的优势
基于matplotlib,能够简便的画图
独特的数据结构
主要的数据结构(类型)是DataFrame,可以描述数据也可以绘图,是对numpy和matplotlib的封装。
读取数据相对方便,可以与数据库进行交互。

案例:

(在jupyter notebook中实现)

# 导入pandas

import pandas as pd

# 创建一个符合正态分布的10个股票5天的涨跌幅数据
stock_change = np.random.normal(0, 1, (10, 5))
# 输出结果
array([[-0.06544031, -1.30931491, -1.45451514,  0.57973008,  1.48602405],
       [-1.73216741, -0.83413717,  0.45861517, -0.80391793, -0.46878575],
       [ 0.21805567,  0.19901371,  0.7134683 ,  0.5484263 ,  0.38623412],
       [-0.42207879, -0.33702398,  0.42328531, -1.23079202,  1.32843773],
       [-1.72530711,  0.07591832, -1.91708358, -0.16535818,  1.07645091],
       [-0.81576845, -0.28675278,  1.20441981,  0.73365951, -0.06214496],
       [-0.98820861, -1.01815231, -0.95417342, -0.81538991,  0.50268175],
       [-0.10034128,  0.61196204, -0.06850331,  0.74738433,  0.143011  ],
       [ 1.00026175,  0.34241958, -2.2529711 ,  0.93921064,  1.14080312],
       [ 2.52064693,  1.55384756,  1.72252984,  0.61270132,  0.60888092]])

但是这样的数据形式很难看到存储的是什么的样的数据,并也很难获取相应的数据,比如需要获取某个指定股票的数据,就很难去获取!!

问题:如何让数据更有意义的显示?处理刚才的股票数据

# 使用Pandas中的数据结构
stock_day_rise = pd.DataFrame(stock_change)

给股票涨跌幅数据增加行列索引,显示效果更佳
效果:

stockdf

在这里插入图片描述

增加行索引

# 构造行索引序列
stock_code = ['股票' + str(i) for i in range(stock_day_rise.shape[0])]

# 添加行索引
data = pd.DataFrame(stock_change, index=stock_code)

增加列索引

股票的日期是一个时间的序列,我们要实现从前往后的时间还要考虑每月的总天数等,不方便。使用pd.date_range():用于生成一组连续的时间序列(暂时了解)

date_range(start=None,end=None, periods=None, freq=‘B’)

start:开始时间

end:结束时间

periods:时间天数

freq:递进单位,默认1天,'B'默认略过周末

periods和end有一个就可以了,指定了结束日期就不用指定时间天数

# 生成一个时间的序列,略过周末非交易日
date = pd.date_range('2017-01-01', periods=stock_day_rise.shape[1], freq='B')

# index代表行索引,columns代表列索引
data = pd.DataFrame(stock_change, index=stock_code, columns=date)

2 DataFrame

2.1 DataFrame结构

DataFrame对象既有行索引,又有列索引

行索引,表明不同行,横向索引,叫index,0轴,axis=0
列索引,表名不同列,纵向索引,叫columns,1轴,axis=1
注意:这里与numpy中的行列数值是反的,在numpy中axis=0为列,axis=1为行。

4.2 DatatFrame的属性

shape

data.shape
# 结果
(10, 5)

index
DataFrame的行索引列表

data.index

Index(['股票0', '股票1', '股票2', '股票3', '股票4', '股票5', '股票6', '股票7', '股票8', '股票9'], dtype='object')

columns
DataFrame的列索引列表

data.columns

DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05',
               '2017-01-06'],
              dtype='datetime64[ns]', freq='B')

values
直接获取其中array的值

data.values

array([[-0.06544031, -1.30931491, -1.45451514,  0.57973008,  1.48602405],
       [-1.73216741, -0.83413717,  0.45861517, -0.80391793, -0.46878575],
       [ 0.21805567,  0.19901371,  0.7134683 ,  0.5484263 ,  0.38623412],
       [-0.42207879, -0.33702398,  0.42328531, -1.23079202,  1.32843773],
       [-1.72530711,  0.07591832, -1.91708358, -0.16535818,  1.07645091],
       [-0.81576845, -0.28675278,  1.20441981,  0.73365951, -0.06214496],
       [-0.98820861, -1.01815231, -0.95417342, -0.81538991,  0.50268175],
       [-0.10034128,  0.61196204, -0.06850331,  0.74738433,  0.143011  ],
       [ 1.00026175,  0.34241958, -2.2529711 ,  0.93921064,  1.14080312],
       [ 2.52064693,  1.55384756,  1.72252984,  0.61270132,  0.60888092]])

T
转置

data.T

DF转置结果
在这里插入图片描述

head(5):显示前5行内容
如果不补充参数,默认5行。填入参数N则显示前N行

data.head(5)

2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
股票0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
股票1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
股票2    0.218056    0.199014    0.713468    0.548426    0.386234
股票3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
股票4    -1.725307    0.075918    -1.917084    -0.165358    1.076451

tail(5):显示后5行内容
如果不补充参数,默认5行。填入参数N则显示后N行

data.tail(5)

 2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
股票5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
股票6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
股票7    -0.100341    0.611962    -0.068503    0.747384    0.143011
股票8    1.000262    0.342420    -2.252971    0.939211    1.140803
股票9    2.520647    1.553848    1.722530    0.612701    0.608881
4.3 DatatFrame索引的设置
4.3.1修改行列索引值
stock_code = ["股票_" + str(i) for i in range(stock_day_rise.shape[0])]

# 必须整体全部修改
data.index = stock_code
结果

2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
股票_0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
股票_1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
股票_2    0.218056    0.199014    0.713468    0.548426    0.386234
股票_3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
股票_4    -1.725307    0.075918    -1.917084    -0.165358    1.076451
股票_5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
股票_6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
股票_7    -0.100341    0.611962    -0.068503    0.747384    0.143011
股票_8    1.000262    0.342420    -2.252971    0.939211    1.140803
股票_9    2.520647    1.553848    1.722530    0.612701    0.608881

注意:以下修改方式是错误的

# 错误修改方式
data.index[3] = '股票_3'
4.3.2 重设索引

reset_index(drop=False)
设置新的下标索引
drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
drop参数为创建重置索引的后的新DataFrame时是否删除原索引,默认为False

重置索引会返回一个新的DataFrame,原来的DataFrame没有被改变

# 重置索引,drop=False
data.reset_index()

    index    2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
0    股票_0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
1    股票_1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
2    股票_2    0.218056    0.199014    0.713468    0.548426    0.386234
3    股票_3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
4    股票_4    -1.725307    0.075918    -1.917084    -0.165358    1.076451
5    股票_5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
6    股票_6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
7    股票_7    -0.100341    0.611962    -0.068503    0.747384    0.143011
8    股票_8    1.000262    0.342420    -2.252971    0.939211    1.140803
9    股票_9    2.520647    1.553848    1.722530    0.612701    0.608881
# 重置索引,drop=True
data.reset_index(drop=True)

2017-01-02 00:00:00    2017-01-03 00:00:00    2017-01-04 00:00:00    2017-01-05 00:00:00    2017-01-06 00:00:00
0    -0.065440    -1.309315    -1.454515    0.579730    1.486024
1    -1.732167    -0.834137    0.458615    -0.803918    -0.468786
2    0.218056    0.199014    0.713468    0.548426    0.386234
3    -0.422079    -0.337024    0.423285    -1.230792    1.328438
4    -1.725307    0.075918    -1.917084    -0.165358    1.076451
5    -0.815768    -0.286753    1.204420    0.733660    -0.062145
6    -0.988209    -1.018152    -0.954173    -0.815390    0.502682
7    -0.100341    0.611962    -0.068503    0.747384    0.143011
8    1.000262    0.342420    -2.252971    0.939211    1.140803
9    2.520647    1.553848    1.722530    0.612701    0.608881
4.3.3 以某列值设置为新的索引

set_index(keys, drop=True)

keys : 列索引名成或者列索引名称的列表 drop : boolean, default True.当做新的索引,删除原来的列

设置新索引案例

1、创建

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

2、以月份设置新的索引

df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

3、设置多个索引,以年和月份

df.set_index(['year', 'month'])
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31

注:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。

5 MultiIndex与Panel

打印刚才的df的行索引结果

df.index

MultiIndex(levels=[[2012, 2013, 2014], [1, 4, 7, 10]],
           labels=[[0, 2, 1, 2], [0, 1, 2, 3]],
           names=['year', 'month'])
5.1 MultiIndex

多级或分层索引对象。

index属性
names:levels的名称
levels:每个level的元组值

df.index.names
FrozenList(['year', 'month'])

df.index.levels
FrozenList([[1, 2], [1, 4, 7, 10]])
5.2 Panel

class pandas.Panel(data=None, items=None, major_axis=None,
minor_axis=None, copy=False, dtype=None) 存储3维数组的Panel结构

p = pd.Panel(np.arange(24).reshape(4,3,2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])
p

<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。
major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。
minor_axis - axis 2,它是每个数据帧(DataFrame)的列。
查看panel数据:

p[:,:,"first"]
p["B",:,:]

注:Pandas从版本0.20.0开始弃用:推荐的用于表示3D数据的方法是通过DataFrame上的MultiIndex方法

6 Series结构

什么是Series结构呢,我们直接看下面的图:

series

series结构只有行索引
用来描述一维的数据结构
我们将之前的涨跌幅数据进行转置,然后获取’股票0’的所有数据

# series
type(data['2017-01-02'])
pandas.core.series.Series

# 这一步相当于是series去获取行索引的值
data['2017-01-02']['股票_0']
-0.18753158283513574
6.1 创建series

通过已有数据创建

指定内容,默认索引

pd.Series(np.arange(10))

指定索引

pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])

通过字典数据创建

pd.Series({'red':100, ''blue':200, 'green': 500, 'yellow':1000})
6.2 series获取属性和值

index

s1= pd.Series(range(10))
s1.index
表示获取索引属性

values
s1.values
表示获取索引值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值