编辑距离 | ||||||
| ||||||
Description | ||||||
俄罗斯科学家Vladimir Levenshtein在1965年提出了编辑距离概念。编辑距离,又称Levenshtein距离,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数。许可的三种编辑操作包括插入一个字符、删除一个字符、将一个字符替换成另一个字符。 至今,编辑距离一直在相似句子检索的领域中发挥着不可忽视的作用。 我们不妨来设计一个程序,计算两个字符串的编辑距离。 | ||||||
Input | ||||||
输入数据的第一行是一个正整数,表示一共有几组数据。 每组数据有两行,每行一个字符串。 * 每个字符串长度不超过1000 * 字符串中只含小写英文字母 | ||||||
Output | ||||||
对于每组数据,请输出一个整数表示两个字符串的编辑距离。 每个答案占一行。 | ||||||
Sample Input | ||||||
2 david vivian abc aabbcc | ||||||
Sample Output | ||||||
4 3
简单dp;
|
#include<bits/stdc++.h>
using namespace std;
char a[1111];
char b[1111];
int dp[1111][1111];
int main()
{
int n;
scanf("%d", &n);
while(n--)
{
scanf("%s", a);
scanf("%s", b);
int len1 = strlen(a);
int len2 = strlen(b);
for(int i = 0; i <= len1; i++)
dp[i][0] = i;
for(int i = 0; i <= len2; i++)
dp[0][i] = i;
for(int i = 1; i <= len1; i++)
{
for(int j = 1; j <= len2; j++)
{
if(a[i - 1] == b[j - 1])
dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i - 1][j - 1], dp[i][j - 1] + 1));
else
dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i - 1][j - 1] + 1, dp[i][j - 1] + 1));
}
}
printf("%d\n",dp[len1][len2]);
}
return 0;
}
/** a[i] == b[i]时
dp[i - 1][j] + 1---删除a[i]
dp[i - 1][j - 1]---将a[i]修改为b[j]
dp[i][j - 1] + 1---删除b[j]
**/