一、题目
实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作。
示例:
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 true
trie.search("app"); // 返回 false
trie.startsWith("app"); // 返回 true
trie.insert("app");
trie.search("app"); // 返回 true
说明:
- 你可以假设所有的输入都是由小写字母 a-z 构成的。
- 保证所有输入均为非空字符串。
二、解决
1、映射
思路:
代码理解没那么难,难的是自己实现且流畅无Bug地书写。
代码:
class TrieNode {
public char val;
public boolean isEnd;
public TrieNode[] children = new TrieNode[26];
public TrieNode() {}
TrieNode(char c) {
TrieNode node = new TrieNode();
node.val = c;
}
}
class Trie {
private TrieNode root;
public Trie() {
root = new TrieNode();
root.val = ' ';
}
public void insert(String word) {
TrieNode ws = root;
for (char c : word.toCharArray()) {
if (ws.children[c - 'a'] == null) {
ws.children[c - 'a'] = new TrieNode(c);
}
ws = ws.children[c - 'a'];
}
ws.isEnd = true;
}
public boolean search(String word) {
TrieNode ws = root;
for (char c : word.toCharArray()) {
if (ws.children[c - 'a'] == null) return false;
ws = ws.children[c - 'a'];
}
return ws.isEnd;
}
public boolean startsWith(String prefix) {
TrieNode ws = root;
for (char c : prefix.toCharArray()) {
if (ws.children[c - 'a'] == null) return false;
ws = ws.children[c - 'a'];
}
return true;
}
}
时间复杂度: insert - O(k),search - O(k),startsWith - O(k),k为传入字符串长度。
空间复杂度: insert - O(1),search - O(1),startsWith - O(1)
2、哈希
思路:
1的基本组成只有26个小写字母,适用范围相对狭隘。而2用了HashMap结构,相对1更加通用。
代码:
class Trie {
class TrieNode {
Map<Character, TrieNode> next = new HashMap<>();
boolean isEnd = false;
}
TrieNode root = new TrieNode();
public Trie() {
}
public void insert(String word) {
TrieNode curr = root;
for (char c : word.toCharArray()) {
if (!curr.next.containsKey(c)) {
TrieNode tmp = new TrieNode();
curr.next.put(c, tmp);
curr = tmp;
} else {
curr = curr.next.get(c);
}
}
curr.isEnd = true;
}
public boolean search(String word) {
TrieNode curr = root;
for (char c : word.toCharArray()) {
if (!curr.next.containsKey(c)) return false;
curr = curr.next.get(c);
}
return curr.isEnd;
}
public boolean startsWith(String prefix) {
TrieNode curr = root;
for (char c : prefix.toCharArray()) {
if (!curr.next.containsKey(c)) return false;
curr = curr.next.get(c);
}
return true;
}
}
时间复杂度: insert - O(k),search - O(k),startsWith - O(k),k为传入字符串长度。
空间复杂度: insert - O(m),search - O(1),startsWith - O(1)。
三、参考
1、AC JAVA solution simple using single array
2、208. 实现 Trie (前缀树) 包括insert、search、startwith、delete四种操作
3、数据结构设计之实现 Trie (前缀树)[Sumatran Rhinoceros]
4、Java my solution with brief explanations (15ms, beats 95%)
5、Simple Java Solution
6、AC solution in Java