EMNLP 22:IELM: An Open Information Extraction Benchmark for Pre-Trained Language Models

文章介绍了IELM,一个利用预训练语言模型进行开放信息抽取(OpenIE)的基准,特别是在无监督情况下。通过将句子拆分为名词短语并利用注意力分数进行三元组生成,IELM在标准及大规模新数据集上展现出竞争力。零样本的预训练LM甚至在某些情况下超越了最先进的监督方法,且不依赖训练集。
摘要由CSDN通过智能技术生成

IELM: An Open Information Extraction Benchmark for Pre-Trained Language Models

总结

将open IE 三元组抽取,建模为了基于NP phrase的beam 生成问题,beam生成是基于注意力分值的。

我们创建了一个 OIE 基准,旨在全面检查预训练 LM 中存在的开放关系信息。我们通过将预训练的 LM 转变为零样本 OIE 系统来实现这一点。令人惊讶的是,预训练的 LM 能够在标准 OIE 数据集(CaRB 和 Re-OIE2016)和我们通过远程建立的两个新的大规模事实 OIE 数据集(TAC KBP-OIE 和 Wikidata-OIE)上获得有竞争力的表现监督。例如,零样本预训练 LM 在我们的实际 OIE 数据集上优于最先进的监督 OIE 方法的 F1 分数,而无需使用任何训练集。 1

贡献点:
远程建立的两个新的大规模事实 OIE 数据集(TAC KBP-OIE 和 Wikidata-OIE)
OIE的信息抽取基准。(我理解的OIE,这篇文章是在open information extraction做三元组的信息抽取)

zero-shot OIE

在这里插入图片描述
名词短语 (NP) 分块句子作为输入,并输出一组三元组。该方法首先通过将 NPs 编码为参数对来进行参数提取,然后使用预训练语言模型的参数(即注意力分数)通过解码来执行谓词提取。然后在我们的 IELM 基准上评估输出提取

使用预训练 LM 中的注意力分数来衡量序列和argument pair对之间的相关性。我们将该过程定义为一个搜索问题。给定一个argument pair,我们的目标是搜索连接该对的注意力得分最高的序列。为每个可能的序列计算一个分数在计算上是昂贵的,特别是当序列长度很大时,因此穷举搜索是难以处理的。我们将集束搜索作为一种近似策略来有效地探索搜索空间。使用beam search 选择k-best的候选,beam search的成本取决于k的大小和生成序列的长度。

实施过程:

  • 从第一个argument开始搜索。第一个argument作为初始候选者添加到beam中。在图 2(a) 中,在第 0 步,“Dylan”被添加到光束中。总注意力分数初始化为 0。
    • 如果当前候选者尚未达到第二个参数,则在光束中产生一个新的部分候选者。此操作执行以下操作:将下一个最大的参与令牌附加到当前候选的末尾以产生新的候选。总分随着相关注意力得分的增加而增加。在图 2(a) 的第 1 步,“born”被附加到当前候选者以产生​​部分候选者,因为“born”具有最大的注意力得分(0.2,如图 2(b)中突出显示)和“Dylan ”在注意力矩阵中。总分变为0.2。请注意,为简单起见,我们在此示例中仅考虑单头注意力。图 2(b) 中的“x”标记了搜索中未考虑的标记(在当前标记之前)以防止向后搜索。第2步采取相同的动作,得分变为​​0.5。
    • 如果候选项已达到第二个argument,则停止搜索步骤,然后将候选项作为有效三元组添加到beam中。返回给定对的 (Dylan;出生于;明尼苏达州)。三元组的最终得分是0.7。

需要注意的是,注意力矩阵采用是word level,不是token level。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YJII

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值