Caffe实战Day5-使用opencv调用caffe模型进行分类

本文介绍了如何在VS2017环境下,结合OpenCV 3.3的DNN模块调用Caffe预训练模型,实现图像分类。详细步骤包括模型的加载、前处理及后处理,为读者提供了从Caffe模型到实际应用的实战指导。
摘要由CSDN通过智能技术生成
通过前面的文章,我们已经使用caffe训练了一个模型,下面我们在opencv中使用模型进行预测吧!
环境:OpenCV 3.3+VS2017
准备好三个文件:deploy.prototxt、caffemdel文件、标签文件labels.txt,建议大家按照前面的文章生成相应的文件,因为格式不同,可能程序运行会有错误。
1、修改deploy.prototxt文件
只需将输入层的格式修改一下:

name: "CaffeNet"
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }
}
修改为:
name: "CaffeNet"
input: "data"
input_dim: 10 
input_dim: 3 
input_dim: 227 
input_dim: 227
即可。
2、我将三个文件命名为:caffenet.prototxt、caffenet.caffemodel、labels.txt
3、VS新建工程,复制下面代码:

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值