【C++笔记】原码、反码、补码

本文介绍了计算机中数值的存储方式,重点讲解了原码、反码和补码的概念。通过补码,计算机可以仅使用加法实现加减运算,并解决0的符号表示以及二进制编码问题。8位二进制下,补码能表示的范围为[-128, 127]。" 124458740,13603133,Python编程练兵场:九大在线练习网站推荐,"['Python', '编程实践', '学习资源', '算法训练', '游戏编程']
摘要由CSDN通过智能技术生成

数值在计算机中是以补码的方式存储的,在探求为何计算机要使用补码之前, 让我们先了解原码, 反码和补码的概念。

  对于一个数, 计算机要使用一定的编码方式进行存储。 原码, 反码, 补码是计算机存储一个具体数字的编码方式。

  一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1。比如,十进制中的数 +2 ,计算机字长为8位,转换成二进制就是[00000010]。如果是 -2 ,就是 [10000010] 。因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 [10000010],其最高位1代表负,其真正数值是 -2 而不是形式值130([10000010]转换成十进制等于130)。所以将带符号位的机器数对应的真正数值称为机器数的真值。

  1. 原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值。
  2. 反码的表示方法是:正数的反码是其本身;负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
  3. 补码的表示方法是:正数的补码就是其本身;负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1。 (即在反码的基础上+1)

举例:

十进制数 原码 反码 补码
85 0101 0101 0101 0101 0101 0101
首先,我们需要了解如何将十进制转换成二进制的原码反码补码。 1. **原码**:正数直接表示,负数则最高位为1(对于有符号整数)。 - **95 (十进制)**: 原码 = 000001010101(因为95在8位内,不足8位补0) - **-131 (十进制)**: 原码 = 111110100011 (负数最高位为1) 2. **反码**:对原码取反,然后加1(对于有符号整数)。负数的反码是除符号位外全变1。 - **95 (十进制)**: 反码 = 111110101010 (+95的反码) - **-131 (十进制)**: 反码 = 000001011100 (-131的反码) 3. **补码**:也是对原码取反,然后加1,但对于负数,有一个特殊情况:零的补码等于其本身。 - **95 (十进制)**: 补码 = 111110101010 (+95的补码,无需调整) - **-131 (十进制)**: 补码 = 000001011101 (-131的补码,注意最后一位由1变为0) 4. **浮点数的原码反码补码**: - **0.125 (十进制)**: 由于是小数,通常会采用偏移二进制表示法,即在最高位后面跟上实际值的二进制。0.125 = 1 / 8 = 0.00011001... - 原码 = 000000000000011001000... (保留足够位数) - 反码 = 11111111111110011111100... (先取反再加1) - 补码 = 11111111111110011111100... (小数部分不变,不需要加1) - **-0.875 (十进制)**: 同样是小数,可以将其转化为二进制形式 -0.125 * 8 = -1 = -1000... - 原码 = 100000000000001110000... (带符号,注意最左一位) - 反码 = 01111111111111000111100... (先取反再加1) - 补码 = 01111111111111000111100... (小数部分不变,不需要加1)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值