神经网络
HelloZEX
[2018·10·18]所谓核心竞争力,永远是自身的实力!
[2022·4·4]我需要换一个大脑!
展开
-
《ImageNet Classification with Deep Convolutional Neural Networks》 Alex Krizhevsky(AlexNet译文)
原论文地址 caffe的实现 TensorFlow的实现参考:AlexNet论文翻译与解读 alexnet 论文翻译 AlexNet论文翻译 2018-06-09 10:39:34 · 2522 阅读 · 2 评论 -
【深度学习】AlexNet
从AlexNet开始(一)不可否认,深度学习的热潮正是由2012年AlexNet的出现而引发的,因此,学习AlexNet网络的结构,对于CNN的学习与理解是不可或缺的。在本篇博客中,将会对AlexNet的论文进行翻译与解读,并在下一篇博客中试图使用ALexNet的网络构建思想去建立一个简单的CNN模型用来对CIFAR-10数据集进行分类。AlexNet论文题目:ImageNet Classific...转载 2018-06-30 16:17:48 · 472 阅读 · 0 评论 -
【神经网络】卷积层输出大小计算(长、宽、深度)
先定义几个参数输入图片大小 W×W Filter大小 F×F 步长 S padding的像素数 P于是我们可以得出N = (W − F + 2P )/S+1输出图片大小为 N×N转载:卷积中的特征图大小计算方式有两种,分别是‘VALID’和‘SAME’,卷积和池化都适用,除不尽的结果都向上取整。 1.如果计算方式采用'VALID',则:其中为输出特征图...原创 2018-07-19 09:16:12 · 72547 阅读 · 12 评论 -
【CS231n】cs231斯坦福大学计算机视觉课程笔记翻译--学习(转载)
Convolutional Neural Networks for Visual Recognition贺完结!CS231n官方笔记授权翻译总集篇发布 - 智能单元 - 知乎专栏https://zhuanlan.zhihu.com/p/21930884CS231n课程笔记翻译:图像分类笔记(上) - 智能单元 - 知乎专栏 https://zhuanlan.zhihu.com/p/20894041...转载 2018-07-16 10:17:49 · 1745 阅读 · 0 评论 -
【深度学习】初识VGG16
一. 简述 VGG卷积神经网络是牛津大学在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。在2014年的ILSVRC比赛中,VGG 在Top-5中取得了92.3%的正确率。VGG结构图VGG-16VGG模型有一些变种,其中最受欢迎的当然是 VGG-16,这是一个拥有16...原创 2018-11-15 16:23:36 · 17643 阅读 · 0 评论 -
【深度学习】全面直观认识深度神经网络
01深度学习的精准定义 一类通过多层非线性变换对高复杂性数据建模算法的集合。它的两个非常重要的特征是多层性和非线性。俗称多层非线性变换。所以深度学习要去线性化。为什么呢?因为线性模型存在局限性,任意线性模型得到组合仍然还是线性模型。所以只要通过线性变换,任意层的全连接神经网络和单层神经网络模型的表达能力没有任何区别,而且他们都是线性模型,线性模型解决问题的能力是有限的。02激活函数实现...转载 2018-11-16 11:22:43 · 955 阅读 · 0 评论 -
【深度学习】入门的25个概念
神经网络基础1)神经元(Neuron)——就像形成我们大脑基本元素的神经元一样,神经元形成神经网络的基本结构。想象一下,当我们得到新信息时我们该怎么做。当我们获取信息时,我们一般会处理它,然后生成一个输出。类似地,在神经网络的情况下,神经元接收输入,处理它并产生输出,而这个输出被发送到其他神经元用于进一步处理,或者作为最终输出进行输出。 2)权重(Weights)——当输入进入神经元时,...转载 2018-11-27 10:14:41 · 1421 阅读 · 1 评论