【神经网络】卷积层输出大小计算(长、宽、深度)

先定义几个参数

  • 输入图片大小 W×W
  • Filter大小 F×F
  • 步长 S
  • padding的像素数 P

于是我们可以得出

N = (W − F + 2P )/S+1

输出图片大小为 N×N


转载:

卷积中的特征图大小计算方式有两种,分别是‘VALID’和‘SAME’,卷积和池化都适用,除不尽的结果都向上取整

 

1.如果计算方式采用'VALID',则:

其中为输出特征图的大小,为输入特征图的大小,F为卷积核大小,stride为卷积步长。

2.如果计算方式采用'SAME',输出特征图的大小与输入特征图的大小保持不变,

其中padding为特征图填充的圈数。

若采用'SAME'方式,kernel_size=1时,padding=0;kernel_size=3时,padding=1;kernel_size=5时,padding=3,以此类推。


tensorflow代码(Tensorflow官方文档)中:

w_conv1=weight_variable([5,5,1,32]),一直不明白这个32是怎么来的,表示的是什么?
 
后来看到cs231n-知乎课程翻译的卷积神经网那一章的一段话:

参数共享:在卷积层中使用参数共享是用来控制参数的数量。就用上面的例子,在第一个卷积层就有55x55x96=290,400个神经元,每个有11x11x3=364个参数和1个偏差。将这些合起来就是290400x364=105,705,600个参数。单单第一层就有这么多参数,显然这个数目是非常大的。

作一个合理的假设:如果一个特征在计算某个空间位置(x,y)的时候有用,那么它在计算另一个不同位置(x2,y2)的时候也有用。基于这个假设,可以显著地减少参数数量。换言之,就是将深度维度上一个单独的2维切片看做深度切片(depth slice),比如一个数据体尺寸为[55x55x96]的就有96个深度切片,每个尺寸为[55x55]。在每个深度切片上的神经元都使用同样的权重和偏差。在这样的参数共享下,例子中的第一个卷积层就只有96个不同的权重集了,一个权重集对应一个深度切片,共有96x11x11x3=34,848个不同的权重,或34,944个参数(+96个偏差)。

可以看出,上面的32表示的是卷积层输出的深度,因为大家都明白width和height都可以通过公式计算得到,但是很多文献都没有告诉深度是如何得到的,下面是我的认识:

1. 因为这个深度是没有公式可以计算出来的,因为深度是一个经验值,如上面代码的32 ,其实是一个经验值,是通过调整参数发现32是一个最合适的值,可以得到最好的准确率,但是不同的图像的深度是不一样的。

2.这个深度表示用了多少个卷积核,下面这个图可以说明一下:

上图就可以很有效的说明 :卷积层输出的深度==卷积核的个数。

二维卷积神经网络(Convolutional Neural Network, CNN)是一种常用于图像处理和计算机视觉任务的深度学习模型。下面是二维卷积神经网络计算公式: 1. 输入数据: 假设输入数据为一个二维矩阵,通常表示为一个三维张量,形状为 [batch_size, height, width, channels],其中 batch_size 表示输入的样本数量,height 和 width 表示输入图像的度和度,channels 表示输入图像的通道数。 2. 卷积操作: 卷积操作是二维卷积神经网络的核心操作,它通过滑动一个称为卷积核(或滤波器)的小矩阵在输入数据上进行计算卷积操作的计算公式如下: ![convolution_formula](https://img-blog.csdnimg.cn/20211209153603634.png) 其中,* 表示卷积操作,i 和 j 分别表示输出特征图的位置,k 和 l 分别表示卷积核的位置,h 和 w 分别表示卷积核的度和度,C_in 和 C_out 分别表示输入和输出特征图的通道数。 3. 激活函数: 在卷积操作之后,通常会对输出特征图应用激活函数,以引入非线性变换。常用的激活函数包括ReLU、Sigmoid、Tanh等。 4. 池化操作: 池化操作用于减小特征图的尺寸,并提取出主要特征。常用的池化操作有最大池化和平均池化。池化操作的计算公式如下: ![pooling_formula](https://img-blog.csdnimg.cn/20211209153603635.png) 其中,⨆ 表示池化操作,i 和 j 分别表示输出特征图的位置,k 和 l 分别表示池化窗口的位置,h 和 w 分别表示池化窗口的度和度。 以上是二维卷积神经网络计算公式。如果你还有其他问题,请继续提问。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值