Jointly Embedding Knowledge Graphs and Logical Rules

在知识图谱中如何建模规则,原文地址:https://www.aclweb.org/anthology/D16-1019.pdf

本文讲述了如何将规则和三元组建模到一个统一的空间,三元组和规则同时建模,对文章的主体内容总结如下:

方法概述:

为了联合嵌入,方法的关键是通过一阶逻辑将三元组和规则统一起来。一个三元组可看作一个基本原子,给定一个逻辑规则,首先用实体集中的实体对其进行实例化,例如对于规则,可以用实体 Pairs 和France实例化为具体规则,这样具体规则可看作复杂的公式,由基本原子和逻辑连接符构成。

表示可训练的公式集合(包含原子公式,即三元组,和复杂公式,即具体规则),用真值函数为每个公式设置一个真值,表示一个三元组成立的概率,或一个具体规则满足的概率,三元组的真值由实体和关系的嵌入确定,具体规则的真值由构成它的三元组的真值决定。这样就能将三元组和规则嵌入到一个统一框架中。最后,最小化上的一个全局损失以学习与三元组和规则都相容的嵌入。下面介绍三个部分:三元组建模,规则建模,和联合学习。

三元组建模:

用TRansE建模三运组,三元组的真值定义为:

                                            

其中d是嵌入维度,三元组成立时,其值大,反之,希望其值很小。

规则建模:

用模糊逻辑的方法建模规则的真值。复杂公式的真值建模为它的组成成分的真值的结合:

                                                 

                                                

本文目前只考虑两种类型的规则,第一种是,它可以记作,其真值的计算方法为:

                                                 

第二种是,它可以记作,其真值计算方法为:

                                             

真值越大,说明这一规则被满足的概率越大。

联合学习:把三元组和规则建模为原子公式和复杂公式后,最小化这一表示上的全局损失以学习同时满足三元组和规则的实体和关系的嵌入。首先构建包含正公式的训练集,包括1)已有的三元组,2)至少包含一个正三元组的具体规则。然后最小化基于间隔的损失:

                                                      

如果是三元组,则随机替换头或尾实体来生成负三元组,如果是具体规则,则随机替换结论中的r来构建负样本。

 

 

 

 

 

 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Learning low-dimensional embeddings of knowledge graphs is a powerful approach used to predict unobserved or missing edges between entities. However, an open challenge in this area is developing techniques that can go beyond simple edge prediction and handle more complex logical queries, which might involve multiple unobserved edges, entities, and variables. For instance, given an incomplete biological knowledge graph, we might want to predict what drugs are likely to target proteins involved with both diseases X and Y?—a query that requires reasoning about all possible proteins that might interact with diseases X and Y. Here we introduce a framework to efficiently make predictions about conjunctive logical queries—a flexible but tractable subset of first-order logic—on incomplete knowledge graphs. In our approach, we embed graph nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space. By performing logical operations within a low-dimensional embedding space, our approach achieves a time complexity that is linear in the number of query variables, compared to the exponential complexity required by a naive enumeration-based approach. We demonstrate the utility of this framework in two application studies on real-world datasets with millions of relations: predicting logical relationships in a network of drug-gene-disease interactions and in a graph-based representation of social interactions derived from a popular web forum.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值