机器学习 之PCA(主成分分析)与拉格朗日乘子

PCA能做的事其实很有限,那就是:降维。为什要降维呢?很明显,数据中有些内容没有价值,这些内容的存在会影响算法的性能和准确性。
在这里插入图片描述
在这里插入图片描述
看这两个图,就说明了降维的意义,越降维,维度就会越有意义。这样只取x2的值(投影),就从二维降维到了一维。主成分分析可以让数据的投影到那些数据分布尽可能分散(信息最大)的平面上,比如上图的y1,从而忽视y2的作用,进而达到降维的目的。

说是降维,实际上就是坐标变换+去掉一些坐标,降维函数实际上一个 W W W就可以了。降维不是简单去除某一特征,而是合并两个相似的特征成为一个特征。

下面说明PCA做法
首先这里有n行样本,每行样本有m个特征,我们想把它压缩成k个。
然后求出每列的均值,然后用每列减之。
然后求这个矩阵的列协方差矩阵(mm的矩阵了)。
然后求这个协方差矩阵的特征值,一共m个。
我们挑取前k个,算出其特征向量,组成m
k的矩阵。
然后用被减去均值的矩阵乘之,就是最后的结果。
参考:
https://www.cnblogs.com/edver/p/5173607.html

每日小常识:
拉格朗日乘子实际上就是找寻限制的关系
在这里插入图片描述
实际上上面的圆是梯度,实际上是三维的(x,y都是自变量),这样越往里越高,很明显限制g切最核心的是 d 1 d_1 d1圈,这是它能到达的最高位置,这个位置就是最好的位置,如何求呢?

可以观察到二者的切线相同,原理都懂,那么到底怎么做呢?本质就是,二维函数的梯度向量(一维函数叫法向量,但梯度向量不局限于水平的平面上)与一维函数的法向量平行,因此它们是倍数关系。实际上,我们可以将限制函数也拆成二维函数,将法向量变成梯度向量(密度向量),然后联立:
在这里插入图片描述
实际上对x与y分别求导,求导出来的就是梯度向量。并不是降维反而是升维。

变形是很常见的:
在这里插入图片描述
为什么这样呢?其实上上面求导是三个方程,这里也是三个方程,表面上其实并没有什么含义,只不过是恰好可以一个式子表示罢了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值