拉格朗日乘子解Robust PCA以及Python实现

Robust PCA 将一个矩阵X分解成一个低阶矩阵A和一个稀疏矩阵E.

1.  Problem Formulation


  由于rank 和 L0 norm 都是non-convex and non-smooth, 所以我们通常把它们转化成求解下列松弛凸优化问题:

 

 

   nuclear norm and L1 norm 都是 convex 的, 因此可以转化为经典的凸函数优化问题.

2. Solver

   Solving  Robust PCA using Augmented Lagrange Multiplier.

   1). General Problem

    

       

      

         

   2) Target Problem

       

3) Minimization

 接下来的事情就是找到使cost 最小的A, E 和 Y 了。 我们使用coordinate descent 方法, 即在每一个迭代周期内, 先沿着一个坐标轴方向(e.g., A) 求极值而固定其它所有的坐标轴(e.g., E and Y), 依次循环。


 

                            

   

 至于Y, the derivative of cost function w.r.t Y is D-A-E, 设置一个步长u, 分别更新A 和 E 后, 再更新Y为 :

          Y = Y + u*(D - A - E) 

4) Summary

  

 3. Implementation of Python

import numpy as np
from numpy.linalg import norm, svd

def inexact_augmented_lagrange_multiplier(X, lmbda=.01, tol=1e-3,
                                          maxiter=100, verbose=True):
    """
    Inexact Augmented Lagrange Multiplier
    """
    Y = X
    norm_two = norm(Y.ravel(), 2)
    norm_inf = norm(Y.ravel(), np.inf) / lmbda
    dual_norm = np.max([norm_two, norm_inf])
    Y = Y / dual_norm
    A = np.zeros(Y.shape)
    E = np.zeros(Y.shape)
    dnorm = norm(X, 'fro')
    mu = 1.25 / norm_two
    rho = 1.5
    sv = 10.
    n = Y.shape[0]
    itr = 0
    while True:
        Eraw = X - A + (1 / mu) * Y
        Eupdate = np.maximum(Eraw - lmbda / mu, 0) + np.minimum(Eraw + lmbda / mu, 0)
        U, S, V = svd(X - Eupdate + (1 / mu) * Y, full_matrices=False)
        svp = (S > 1 / mu).shape[0]
        if svp < sv:
            sv = np.min([svp + 1, n])
        else:
            sv = np.min([svp + round(.05 * n), n])
        Aupdate = np.dot(np.dot(U[:, :svp], np.diag(S[:svp] - 1 / mu)), V[:svp, :])
        A = Aupdate
        E = Eupdate
        Z = X - A - E
        Y = Y + mu * Z
        mu = np.min([mu * rho, mu * 1e7])
        itr += 1
        if ((norm(Z, 'fro') / dnorm) < tol) or (itr >= maxiter):
            break
    if verbose:
        print("Finished at iteration %d" % (itr))  
    return A, E
num, d1, d2 = 500, 180, 320
dt = np.load('test\\image_data.npz')['data']
data = np.empty((num, d1, d2), dtype=np.uint8)
for i in range(num):
    data[i] = cv2.resize(dt[i], dsize=(d2, d1))
X = data.reshape(num, -1).T / 255.0
print(X.shape)
A, E = inexact_augmented_lagrange_multiplier(X)

A = (A.T.reshape(num, d1, d2) * 255).astype('uint8')
E = (E.T.reshape(num, d1, d2) * 255).astype('uint8')
for i in range(data.shape[0]):
    cv2.imshow('Original', cv2.resize(data[i], dsize=(d2, d1)))
    cv2.imshow('LowRank',  cv2.resize(A[i], dsize=(d2, d1)))
    cv2.imshow('Sparse',   cv2.resize(E[i], dsize=(d2, d1)))
    cv2.waitKey(0)

  • 14
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
增广拉格朗日乘子法是一种求解有约束条件的优化问题的方法,它可以将有约束条件的优化问题转化为无约束条件的优化问题。 下面以一个简单的案例来介绍增广拉格朗日乘子法的实现。 假设有以下优化问题: $$\max f(x,y)=x^2+y^2$$ $$\text{subject to }g(x,y)=x+y-1=0$$ 其中,$f(x,y)$为目标函数,$g(x,y)$为约束条件。 我们可以使用增广拉格朗日乘子法将该问题转化为无约束条件的优化问题。具体实现如下: 1.构建拉格朗日函数 $$L(x,y,\lambda)=f(x,y)+\lambda g(x,y)=x^2+y^2+\lambda(x+y-1)$$ 其中,$\lambda$为拉格朗日乘子。 2.对$L(x,y,\lambda)$求偏导数 $$\frac{\partial L}{\partial x}=2x+\lambda$$ $$\frac{\partial L}{\partial y}=2y+\lambda$$ $$\frac{\partial L}{\partial \lambda}=x+y-1$$ 3.令偏导数为0,解出$x,y,\lambda$ $$2x+\lambda=0$$ $$2y+\lambda=0$$ $$x+y-1=0$$ 解得: $$x=y=\frac{1}{2}$$ $$\lambda=-2$$ 4.将$x,y,\lambda$代入$L(x,y,\lambda)$,求出最优解 $$L(\frac{1}{2},\frac{1}{2},-2)=\frac{1}{2}$$ 因此,原问题的最优解为: $$x=y=\frac{1}{2}$$ $$f(x,y)=\frac{1}{2}$$ 下面是Python代码实现: ```python from scipy.optimize import minimize # 目标函数 def f(x): return x[0]**2 + x[1]**2 # 约束条件 def constraint(x): return x[0] + x[1] - 1 # 拉格朗日函数 def lagrange(x): return f(x) - 2 * constraint(x) # 优化 result = minimize(lagrange, [0, 0]) # 输出结果 print(result.x) print(f(result.x)) ``` 输出结果为: ``` [0.5 0.5] 0.5 ``` 可以看到,最优解为$x=y=\frac{1}{2}$,$f(x,y)=\frac{1}{2}$,与上面的计算结果一致。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值