量化软件:如何利用均线交叉指标实现期货市场上的智能交易?

程序化交易的出现,使得投资者的交易变得更为自动化和高效,特别是对于一些机械化指标的操作,让人们更容易更准确地开启和平仓位。均线交叉指标是程序化交易中最为常用的一种,它能够帮助我们根据市场价格的走势,以更为准确的方式判断买入和卖出的时机,从而增强投资者的预判能力。赫兹量化交易软件
均线交叉策略是建立在均线上的,它的前提是选择合适的均线进行交叉分析。在使用这种策略时,我们可以单独使用10天均线和20天均线,也可以分别用5天均线和10天均线等。无论采用何种移动平均线组合,我们都应该清楚地知道,交叉点即市场价格远离协定均线时,无论算法如何计算,都不足以代表随机性的引导,所以拿着均线交叉指标的程序交易系统可以帮助我们更好地把握市场上的机会。
以在期货市场上的均线交叉指标开平仓为例,我们将基于Python语言进行实现:


赫兹量化交易软件

import tushare as ts
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime as dt

# 获取历史价格数据
start_date = "20210101"
end_date = "20220101"
symbol = "rb2101.SHF"
df = ts.get_k_data(symbol, start_date=start_date, end_date=end_date)

# 计算5日和10日的移动平均线
df["5d_mean"] = df["close"].rolling(5).mean()
df["10d_mean"] = df["close"].rolling(10).mean()
df = df.dropna()
赫兹量化交易软件
# 计算交叉信号
df["signal"] = np.where(df["5d_mean"] > df["10d_mean"], 1, -1)

# 生成交易信号
df["position"] = df["signal"].shift(1)
赫兹量化交易软件
# 按照交易信号进行交易
df["return"] = np.log(df["close"] / df["close"].shift(1))
df["strategy_return"] = df["position"] * df["return"]
df[["return", "strategy_return"]].cumsum().apply(np.exp).plot()
赫兹量化交易软件
# 根据交易信号进行买入和卖出
df["buy"] = np.where(df["position"] == 1, df["close"], np.nan)
df["sell"] = np.where(df["position"] == -1, df["close"], np.nan)赫兹量化交易软件
df.set_index("date")["close"].plot(figsize=(20, 10), color="black")
plt.plot(df.set_index("date")["5d_mean"], color="blue", label="5d_mean")
plt.plot(df.set_index("date")["10d_mean"], color="green", label="10d_mean")
plt.scatter(df.set_index("date").index, df.set_index("date")["buy"], color="blue", marker="^", label="buy")
plt.scatter(df.set_index("date").index, df.set_index("date")["sell"], color="red", marker="v", label="sell")
plt.legend()
plt.show()


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值