deeplab中 global average pooling(GAP) 原理

本文探讨了deeplab模型中ASPP模块如何结合全局平均池化(GAP)来提取多尺度语义信息。通过GAP获取全局信息后,使用1*1卷积进行特征转换,并通过双线性插值处理,实现与空洞卷积二维结果的并联融合。同时,提供了相关资料链接和源码参考,以深入理解这一过程。
摘要由CSDN通过智能技术生成

之前有疑惑deeplab中ASPP(Atrous Spatial Pyramid Pooling) 采用多尺度空洞卷积+GAP并联提取多尺度语义信息时,GAP得到的结果是一维的,而空洞卷积得到的结果时二维的,不知道其中的细节是怎么操作从而实现并联的

查资料+看源码

资料

https://sthalles.github.io/deep_segmentation_network/写到
为了增加全局信息,ASPP先对feature map 进行GAP,然后对GAP结果使用256个1*1 卷积,最后使用双线性差值

小实验

import torch.nn as nn
import torch
import torch.nn.functional as F


input = torch.randn(1,2,3,3)
print(input)

global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
                                nn.Conv2d(2, 4, 1, stride=1, bias=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值