极简笔记 Deformable Convolutional Networks

本文简要介绍了Deformable Convolutional Networks,该网络通过预测卷积核的偏移量,提高了对物体几何变形的适应性。文章探讨了deformable convolution和deformable ROI pooling,以及它们如何增强模型的灵活性。实验表明,deformable模块在不显著增加参数量和计算量的情况下,提升了模型的性能,尤其适用于处理复杂的视觉任务。
摘要由CSDN通过智能技术生成

极简笔记 Deformable Convolutional Networks

论文地址:https://arxiv.org/abs/1703.06211

文章核心是提出deformable convolution和deformable roi pooling两种结构模块,使得卷积能够自由形变,打破了方形卷积的形状约束,增强了卷积对于物体几何形变的适应性。
这里写图片描述

先讲deformable convolution,如上图,就是卷积层多出一个分支预测原始卷积核中各个bin对应的卷积位置的offset。这个offset经常是个小数,所以卷积位置的实际取值在是feature map周围像素点的线性插值。用公式表示就是,对于任意位置 p0 p 0 ,它的卷积结果就是:

y(p0)=pnRw(pn)x(p0+pn+pn) y ( p 0 ) = ∑ p n ∈ R w ( p n ) x ( p 0 + p n + △ p n )

其中 pn p n 属于卷积核内的相对坐标集合 R={ (1,1),(1,0),...,(1,0),(1,1)} R = { ( − 1 , − 1 ) , ( − 1 , 0 ) , . . . , ( 1 , 0 ) , ( 1 , 1 ) } pn △ p n 就是fc层预测的offset。因为要考虑插值,所以函数 x(p) x ( p ) 表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值