本系列为慕课网《深度学习之神经网络(CNN/RNN/GAN)算法原理+实战》视频笔记,希望自己能通过分享笔记的形式更好的掌握该部分内容。
往期回顾:
神经网络(一)—— 机器学习、深度学习简介
神经网络
- 神经元:神经网络的最小结构
- Logistic回归模型:在深度学习出现之前最赚钱的算法
- 神经网络训练:调参使得神经网络表现好
神经元——最小的神经网络
上图为神经元的基本结构图。可以看到,神经元有多个输入,一个输出。将输入进行加权求和,通过一个函数
h
h
h得到最后的输出。具体的公式如下:
h
W
,
b
(
x
)
=
f
(
W
T
x
)
=
f
(
Σ
i
=
1
3
W
i
x
i
+
b
)
h_{W,b}(x)=f(W^Tx)=f(\Sigma^3_{i=1}W_ix_i+b)
hW,b(x)=f(WTx)=f(Σi=13Wixi+b)
其中,
W
W
W是权重,
f
f
f是激活函数,
x
x
x是特征,
b
b
b是偏置(可类比截距)。
Example:
X
=
[
3
,
1
,
2
]
X=[3,1,2]
X=[3,1,2],
W
=
[
0.4
,
0.6
,
0.5
]
W=[0.4,0.6,0.5]
W=[0.4,0.6,0.5],
H
(
a
)
=
a
/
10
H(a)=a/10
H(a)=a/10
then
W
∗
X
=
3
∗
0.4
+
1
∗
0.6
+
2
∗
0.5
=
2.8
W*X=3*0.4+1*0.6+2*0.5=2.8
W∗X=3∗0.4+1∗0.6+2∗0.5=2.8 and
H
(
W
∗
X
)
=
H
(
2.8
)
=
0.28
H(W*X)=H(2.8)=0.28
H(W∗X)=H(2.8)=0.28.
Logistic回归模型
将神经元的激活函数设为sigmoid函数,则这个神经元就是一个二分类Logistic回归模型。
sigmoid函数表达式:
f
(
x
)
=
1
1
+
e
−
x
f(x)=\frac{1}{1+e^{-x}}
f(x)=1+e−x1
我们可以看到,sigmoid函数有几个性质:(1)sigmoid函数的取之范围在0-1之间;(2)sigmoid函数是一个对称函数,对称点在
(
0
,
0.5
)
(0,0.5)
(0,0.5);(3)在
[
−
6
,
6
]
[-6,6]
[−6,6]之间曲线比较陡。
而概率也是在0-1之间。所以我们可以定义,在二分类的情况下,
P
(
Y
=
0
∣
x
)
=
h
w
(
x
)
=
1
1
+
e
−
w
T
x
P(Y=0|x)=h_w(x)=\frac{1}{1+e^{-w^Tx}}
P(Y=0∣x)=hw(x)=1+e−wTx1
P
(
Y
=
0
∣
x
)
=
1
−
h
w
(
x
)
=
e
−
w
T
x
1
+
e
−
w
T
x
P(Y=0|x)=1-h_w(x)=\frac{e^{-w^Tx}}{1+e^{-w^Tx}}
P(Y=0∣x)=1−hw(x)=1+e−wTxe−wTx