原创 | 文 BFT机器人
近日,Alhussein Fawzi和Bernardino Romera Paredes在Nature杂志上发表了一篇题为《FunSearch:利用大型语言模型在数学科学中发现新知》的论文。通过搜索计算机代码中的“函数”,FunSearch首次利用大型语言模型在数学科学中的开放性问题上取得了新的发现。
大型语言模型(LLMs)是强大的助手,它们擅长将概念结合起来,可以读、写和编码,帮助人们解决问题。然而,由于LLMs已被证明“产生幻觉”且提供事实不准确的信息,使用它们进行可验证的正确发现是一项挑战。
但如果我们能够利用LLMs的创造力,在其最佳思想基础上进行识别并探索,是否可以发现新知呢?
在这篇文章中,研究人员介绍了FunSearch,这是一种在数学和计算机科学中搜索新解的方法。FunSearch通过将一个经过预训练的LLM与一个自动化的“评估器”配对,以防止产生幻觉和错误的思想。通过在这两个组件之间迭代,初始解决方案“演变”成为新的知识。该系统通过搜索以计算机代码形式编写的“函数”来工作,因此得名FunSearch。