FunSearch:利用大型语言模型在数学科学中发现新知

研究者使用FunSearch,一种结合大型语言模型和自动化评估的工具,在数学和计算机科学中首次实现基于LLMs的可验证新发现。该方法通过迭代改进程序,解决了capset和bin-packing等难题,展示了LLMs在科学进步中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创 | 文 BFT机器人 

图片

近日,Alhussein Fawzi和Bernardino Romera Paredes在Nature杂志上发表了一篇题为《FunSearch:利用大型语言模型在数学科学中发现新知》的论文。通过搜索计算机代码中的“函数”,FunSearch首次利用大型语言模型在数学科学中的开放性问题上取得了新的发现。

大型语言模型(LLMs)是强大的助手,它们擅长将概念结合起来,可以读、写和编码,帮助人们解决问题。然而,由于LLMs已被证明“产生幻觉”且提供事实不准确的信息,使用它们进行可验证的正确发现是一项挑战。

但如果我们能够利用LLMs的创造力,在其最佳思想基础上进行识别并探索,是否可以发现新知呢?

在这篇文章中,研究人员介绍了FunSearch,这是一种在数学和计算机科学中搜索新解的方法。FunSearch通过将一个经过预训练的LLM与一个自动化的“评估器”配对,以防止产生幻觉和错误的思想。通过在这两个组件之间迭代,初始解决方案“演变”成为新的知识。该系统通过搜索以计算机代码形式编写的“函数”来工作,因此得名FunSearch。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值