Pandas滑动窗口rolling函数的统计计算

127 篇文章 34 订阅 ¥59.90 ¥99.00
本文介绍了如何使用Pandas的rolling函数在时间序列数据上进行滑动窗口统计计算,包括求和、平均值、方差、最小值和最大值。通过示例代码展示了如何应用这些统计函数,并强调了它们在分析和预测数据趋势中的作用。
摘要由CSDN通过智能技术生成

滑动窗口(rolling window)是一种常用的数据处理技术,它可以在时间序列或数据框的列上进行滑动操作,计算一系列统计值。在Python中,Pandas库提供了rolling函数,可以轻松地执行滑动窗口统计计算。本文将介绍如何使用Pandas的rolling函数进行相关的统计值计算,并提供相应的源代码。

首先,我们需要安装Pandas库并导入它:

import pandas as pd

接下来,我们创建一个示例数据框,其中包含一个时间序列和一个数值列:

data = {
   '时间': pd.date_range(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值