两个时间序列的水平位移,对两者互信息值的影响

两个时间序列(时序信号)的水平位移(重叠程度),对两者互信息值的影响

1、x和y完全重叠;

MIStimulation(xspike=100, yspike=100)

image-20221203142207715

2、x和y相差1

MIStimulation(xspike=100, yspike=101)

image-20221203142240296

3、x和y相差10

MIStimulation(xspike=100, yspike=110)

image-20221203142320644

3、x和y相差100

MIStimulation(xspike=100, yspike=200)

image-20221203142347530

结论:信号在时序上的重叠程度会影响MI。为什么会出现这种结果呢,因为计算MI时,会计算两者的联合概率分布,当两个信号不重叠的时候,联合概率分布基本上处处为0,所以MI也基本上为0;

image-20221203142611730

def MIStimulation(xspike=500, yspike=500):
    x = np.zeros(1000)
    y = np.zeros(1000)
    ratio = 0.94
    x[xspike] = 2
    for i in range(xspike+1,xspike+200):
        x[i] = x[i-1] * ratio
        # print(x[i])
    y[yspike] = 2
    for i in range(yspike+1,yspike+200):
        y[i] = y[i-1] * ratio
        # print(y[i])

    mi = calMI(x, y)

    fig, ax = plt.subplots()
    ax.plot(x)
    ax.plot(y)
    ax.set_title('xspike is {}, yspike is {}. MI between x and y is {:.2f}'.format(xspike, yspike, mi))
    fig.show()

    print()
nd y is {:.2f}'.format(xspike, yspike, mi))
    fig.show()

    print()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值