一般的时间序列主要是在时间域中进行模型的研究,而对于混沌时间序列,无论是混沌不变量的计算,混沌模型的建立和预测都是在所谓的相空间中进行,因此相空间重构就是混沌时间序列处理中非常重要的一个步骤。所谓混沌序列,可以看作是考察混沌系统所得到的一组随着时间而变化的观察值。假设时间序列是 { x(i):i=1,⋅⋅⋅,n}, 那么吸引子的结构特性就包含在这个时间序列之中。为了从时间序列中提取出更多有用的信息,1980年Packard等人提出了时间序列重构相空间的两种方法:导数重构法和坐标延迟重构法。而后者的本质则是通过一维的时间序列 { x(i)} 的不同延迟时间 τ 来构建 d 维的相空间矢量
1981年Takens提出嵌入定理:对于无限长,无噪声的 d′ 维混沌吸引子的一维标量时间序列 {
x(i):1≤i≤n} 都可以在拓扑不变的意义下找到一个 d 维的嵌入相空间,只要维数
1. 相空间重构
相空间重构技术有两个关键的参数:嵌入的维数 d 和延迟时间
关于嵌入维数 d 和延迟时间
(1) 延迟时间 τ 的确定:
如果延迟时间 τ 太小,则相空间向量
y(i)=(x(i),⋅⋅⋅,x(i+(d−1)τ),1≤i≤n−(d−1)τ
中的两个坐标分量 x(i+jτ) 与 x(i+(j+1)τ) 在数值上非常接近,以至于无法相互区分,从而无法提供两个独立的坐标分量;但是如果延迟时间 τ 太大的话,则两个坐标分量又会出现一种完全独立的情况,混沌吸引子的轨迹在两个方向上的投影就毫无相关性可言。因此需要合适的方法来确定一个合适的延迟时间 τ, 从而在独立和相关两者之间达到一种平衡。
(1.1) 自相关系数法:
自相关函数是求延迟时间 τ 比较简单的一种方法,它的主要理念就是提取序列之间的线性相关性。对于混沌序列 x(1),x(2),⋅⋅⋅,x(n), 可以写出其自相关函数如下:
R(τ)=1n∑n−τi=1x(i)x(i+τ).
此时就可以使用已知的数据 x(1),⋅⋅⋅x(n) 来做出自相关函数 R(τ) 随着延迟时间 τ 变化的图像,当自相关函数下降到初始值 R(0) 的 1−e−1 时,i.e. R(τ)=(1−e−1)R(0), 所得到的时间 τ 也就是重构相空间的延迟时间。虽然自相关函数法是一种简便有效的计算延迟时间的方法,但是它仅仅能够提取时间序列的线性相关性。根据自相关函数法可以让 x(i),x(i+τ) 以及 x(i+τ),x(i+2τ) 之间不相关,但是 x(i),x(i+2τ) 之间的相关性可能会很强。这一点意味着这种方法并不能够有效的推广到高维的研究。而且选择下降系数 1−e−1 时,这一点可能有点主观性,需要根据具体的情况做适当的调整。因此再总结了自相关法的不足之后,下面介绍一种判断系统非线性关系性的一种方法:交互信息法。
(1.2) 交互信息法:
在考虑了以上方法的局限性之后,Fraser和Swinney提出了交互信息法(Mutual Information Method)。假设两个离散信息系统 {
s1,⋅⋅⋅,sm},{
q1,⋅⋅⋅,qn} 所构成的系统 S 和
H(S)=−∑mi=1PS(si)log2PS(si),
H(Q)=−∑nj=1PQ(qj)log2PQ(qj).
其中 PS(si),PQ(qi) 分别是 S 和
I(S,Q)=H(S)+H(Q)−H(S,Q),
其中 H(S,Q)=−∑mi=1∑nj=1PS,Q(si,qj)log2PS,Q(si,qj).
这里的 PS,Q(si,qj) 称为事件 si 和事件 qj 的联合分布概率。交互信息标准化就是
I(S,Q)=I(S,Q)/H(S)×H(Q)−−−−−−−−−−−√.
现在,我们通过信息论的方法来计算延迟时间 τ. 定义 (S,Q)=(x(i),x(i+τ)),1≤i≤n−τ, 也就是 S 代表时间