菜鸡HP的被虐日常(6)当扩大n倍以后……②

B y H o l y P u s h By\quad HolyPush ByHolyPush

愚蠢的 H P HP HP i ? i? i?是坐标系里在 x x x轴方向上的单位向量吗?
聪明的 t x l txl txl:当然不是,我们这里提到的 i i i是一种特殊的数。我们人为规定 i 2 = − 1 。 i^2=-1。 i2=1当然你现在只需要知道它的定义即可。
愚蠢的 H P HP HP:不不不,你在讲它在三角里的用法之前,至少要让我知道它自己是怎么用的吧?建议先把 i i i的用法全部讲一遍,不然要在你脸上嘬一口惹。
聪明的 t x l ( txl( txl(害怕,仔细一想貌似又有点道理 ) : ): ):那好吧。那我讲一讲 i i i的基本运算。再深的也不研究了。

i , i, i,虚数单位。因为在实数域中不存在负数的平方根,所以我们扩充了数系。我们认为规定 i 2 = − 1 i^2=-1 i2=1。当然,同实数一样, − 1 -1 1的平方根有两个,即 ± i ±i ±i

愚蠢的 H P HP HP − 1 -1 1的平方根?这看起来还珍素蓝理解惹。先不管了,实数域用 R R R表示,那么虚数用什么表示厚?
聪明的 t x l txl txl:我们貌似没有对虚数直接规定一个字母……但是一个虚数和一个实数相加后,构成的数我们叫做复数,它用字母 C C C来表示。简单来说,形如 a + b i a+bi a+bi的数叫做复数。其中, a a a是这个复数的实部, b b b是这个复数的虚部。由于没有规定 a , b ≠ 0 a,b≠0 a,b=0,所以,纯虚数和实数也属于复数。一个复数一般用字母 z z z来表示。还有一个概念叫做共轭复数,简单地说就是将虚部的符号反一下,用 z ˉ \bar z zˉ表示。例如, z = 3 + 4 i z=3+4i z=3+4i,它的共轭复数就是 3 − 4 i 3-4i 34i。另外还有一个模长的概念。复数 z = a + b i z=a+bi z=a+bi的模长 ∣ z ∣ = a 2 + b 2 = z z ˉ |z|=\sqrt{a^2+b^2}=\sqrt{z\bar z} z=a2+b2 =zzˉ 。基本概念就到这里了,接下来我们看看运算吧。

首先是复数的四则运算。我们先规定 z 1 = a + b i , z 2 = c + d i z_1=a+bi,z_2=c+di z1=a+bi,z2=c+di
复数的加法,很简单,满足交换律。 z 1 + z 2 = ( a + c ) + ( b + d ) i z_1+z_2=(a+c)+(b+d)i z1+z2=(a+c)+(b+d)i
减法同理, z 1 − z 2 = ( a − c ) + ( b − d ) i z_1-z_2=(a-c)+(b-d)i z1z2=(ac)+(bd)i
乘法,它满足分配律。 z 1 z 2 = ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i z_1z_2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i z1z2=(a+bi)(c+di)=(acbd)+(ad+bc)i
除法,我们要像化简根式一样利用平方差公式分母有理化。 z 1 z 2 = a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 \frac{z_1}{z_2}=\frac{a+bi}{c+di}=\frac{(a+bi)(c-di)}{(c+di)(c-di)}=\frac{(ac+bd)+(bc-ad)i}{c^2+d^2} z2z1=c+dia+bi=(c+di)(cdi)(a+bi)(cdi)=c2+d2(ac+bd)+(bcad)i
愚蠢的 H P HP HP ? ? ? ??? ???这太快了吧。
聪明的 t x l txl txl:就只是单纯的乘法分配律罢了。需要注意的是 i 2 = − 1 i^2=-1 i2=1这个概念不能忘记。
愚蠢的 H P HP HP:惹。

聪明的 t x l txl txl:你有没有发现什么可以联想的地方?
愚蠢的 H P HP HP:?没有惹。
聪明的 t x l txl txl:你难道不觉得这加减法很像是向量的加减法运算吗?
愚蠢的 H P HP HP:好像是有那么一点回事厚。
聪明的 t x l txl txl:于是我们可以建立一个复平面,以 x x x轴为实数轴, y y y轴为虚数轴。那么任何一个复数 a + b i a+bi a+bi都能与平面内的一个点一一对应。而在复平面内,复数相加同样满足平行四边形法则。

在这里插入图片描述
(由于几何画板没有复平面所以只好拿这个来凑数了,当然在复平面中纵轴的一个单位为 i i i
由图可知, ( 3 + 2 i ) + ( 1 + 5 i ) = ( 4 + 7 i ) (3+2i)+(1+5i)=(4+7i) (3+2i)+(1+5i)=(4+7i)

聪明的 t x l txl txl:暂时先不讨论它在复平面里面的用处,要不你先试一试用一下复数?随便来一题,求 x 2 + 2 x + 2 = 0 x^2+2x+2=0 x2+2x+2=0在复数域内的解。
愚蠢的 H P : ( x + 1 ) 2 = − 1 , ∴ x + 1 = ± i , ∴ x = − 1 ± i HP:(x+1)^2=-1,∴x+1=±i,∴x=-1±i HP:(x+1)2=1,x+1=±i,x=1±i。当然还可以选择使用求根公式。 x = − 2 ± 2 2 − 4 ∗ 2 2 = − 1 ± i x=\frac{-2±\sqrt{2^2-4*2}}{2}=-1±i x=22±2242 =1±i
聪明的 t x l txl txl:看看韦达定理,它成立吗?
愚蠢的 H P HP HP:貌似是成立的!也就是说,以前老师讲的都是 Δ < 0 \Delta<0 Δ<0的时候不能用韦达定理,但是实际上在复数域内韦达定理依然是成立的!高兴坏了厚。
聪明的 t x l txl txl:那我们来继续看一看复数的用法吧。这次我们转移阵地,放到“极坐标系”里去看看。

极坐标是什么?可以吃吗?

聪明的 t x l txl txl:平面直角坐标系,我们使用横纵坐标来确定点的位置。在极坐标系里,我们依然用两个量确定点的位置。它们分别是,到原点的距离 r r r和辐角 θ \theta θ(和单位圆中的概念类似),记作 ( r , θ ) (r,\theta) (r,θ)
在这里插入图片描述
图中这个点距离原点的距离为 r = 2 r=2 r=2,辐角为 5 π 12 + 2 k π ( k ∈ Z ) \frac{5\pi}{12}+2k\pi(k∈Z) 125π+2kπ(kZ)。当然你直接写 θ = 75 ° \theta=75° θ=75°其实也没多大问题。所以在极坐标系中,这个点的坐标为 ( 2 , 5 π 12 ) (2,\frac{5\pi}{12}) (2,125π)(就不写 2 k π 2k\pi 2kπ了,但是因为有这个东西的存在,所以一个坐标可以确定一个点,但一个点不能确定一个坐标,它们不是一一对应的关系)。
关于极坐标转直角坐标,这就很简单了。极坐标里 ( r , θ ) (r,\theta) (r,θ)对应到平面直角坐标系里就是 ( r c o s θ , r s i n θ ) (rcos\theta,rsin\theta) (rcosθ,rsinθ)。反过来,直角坐标系转极坐标,只要相应地求出模长以及角度就可以了。

愚蠢的 H P HP HP:看起来和单位圆好像!但这有什么用呢?
聪明的 t x l txl txl:用处就是你会惊奇地发现复数乘法方便了很多!
愚蠢的 H P HP HP:极坐标和复数又扯上什么关系了?莫非他们祖宗 13 13 13代是一家的?
聪明的 t x l txl txl:一家不敢说。极坐标是牛顿发明的,而复数准确来说很早就存在,但没有人承认。著名数学家卡尔达诺在研究三次方程的根的问题时提出了 ( 5 + − 15 ) ( 5 − − 15 ) = 40 (5+\sqrt{-15})(5-\sqrt{-15})=40 (5+15 )(515 )=40。而首次指出虚数这个概念的人则是笛卡尔。你可能会问为什么每次都是牛顿和笛卡尔,因为他们像你一样巨呗。至于卡尔达诺,他提出了“卡尔达诺公式”或称“卡丹公式”(其实思路是从塔尔塔利亚那里抢来的,但先于他发表),给出了形如 x 3 + p x + q = 0 x^3+px+q=0 x3+px+q=0的一元三次方程的通解,其他的三次方程都可以化为这种形式。在运算过程中就有可能会出现复数。呸呸呸扯远了。如果说极坐标里的 r r r表示复数的模长,那么它对应到复平面里的点就是 ( r c o s θ , r s i n θ ) (rcos\theta,rsin\theta) (rcosθ,rsinθ),写成复数就是 r c o s θ + i r s i n θ 。 rcos\theta+irsin\theta。 rcosθ+irsinθ你把两个复数相乘,看看会发生什么?

设两个复数的极坐标为 ( r 1 , θ 1 ) , ( r 2 , θ 2 ) , z 1 = r 1 c o s θ 1 + i r 1 s i n θ 1 , z 2 = r 2 c o s θ 2 + i r 2 s i n θ 2 (r_1,\theta_1),(r_2,\theta_2),z_1=r_1cos\theta_1+ir_1sin\theta_1,z_2=r_2cos\theta_2+ir_2sin\theta_2 (r1,θ1),(r2,θ2)z1=r1cosθ1+ir1sinθ1,z2=r2cosθ2+ir2sinθ2。相乘可得 r 1 r 2 ( c o s θ 1 c o s θ 2 − s i n θ 1 s i n θ 2 ) + i r 1 r 2 ( s i n θ 1 c o s θ 2 + c o s θ 1 s i n θ 2 ) = r 1 r 2 c o s ( θ 1 + θ 2 ) + i r 1 r 2 s i n ( θ 1 + θ 2 ) r_1r_2(cos\theta_1cos\theta_2-sin\theta_1sin\theta_2)+ir_1r_2(sin\theta_1cos\theta_2+cos\theta_1sin\theta_2)=r_1r_2cos(\theta_1+\theta_2)+ir_1r_2sin(\theta_1+\theta_2) r1r2(cosθ1cosθ2sinθ1sinθ2)+ir1r2(sinθ1cosθ2+cosθ1sinθ2)=r1r2cos(θ1+θ2)+ir1r2sin(θ1+θ2)。写成极坐标就是 ( r 1 r 2 , θ 1 + θ 2 ) … … (r_1r_2,\theta_1+\theta_2)…… (r1r2,θ1+θ2)好像发现了什么不得了的事情?

聪明的 t x l : txl: txl:没错,复数如果被表示成极坐标的形式,那么它们的乘积可以用“模长相乘,辐角相加”来表示。那现在来给你一道题。

已知平面直角坐标系里一点 A ( 3 , 4 ) A(3,4) A(3,4),将其绕原点逆时针旋转45°得到点 B B B,求 B B B的坐标。你能想到多少种做法?
在这里插入图片描述
H P : HP: HP:这种题目我初中最会做了。作垂线构造基本图形。
在这里插入图片描述
C ( x , y ) C(x,y) C(x,y),由全等三角形可知 3 − x = y ① , 4 − y = − x ② 3-x=y①,4-y=-x② 3x=y,4y=x,由 ① ② ①② x = − 1 2 , y = 7 2 x=-\frac{1}{2},y=\frac{7}{2} x=21,y=27。由于 B B B O C OC OC延长线上且模长为5,可以算出 B ( − 2 2 , 7 2 2 ) B(-\frac{\sqrt{2}}{2},\frac{7\sqrt{2}}{2}) B(22 ,272 )

聪明的 t x l : txl: txl:不错,但是用高中知识也是非常好的。
你可以选择使用三角函数的和角公式算出直线 B C BC BC的斜率,令 O A → \overrightarrow{OA} OA x x x轴正半轴夹角为 α α α,可得 t a n α = 4 3 tanα=\frac{4}{3} tanα=34 ∴ t a n ( 45 ° + α ) = 1 + t a n α 1 − t a n α = − 7 ∴tan(45°+α)=\frac{1+tan\alpha}{1-tan\alpha}=-7 tan(45°+α)=1tanα1+tanα=7。然后 B B B点在直线 y = − 7 x y=-7x y=7x上运动且在 x x x轴上方,就可以求出来了。

而且我们可以选择向量。我们可以设 O B → = ( x , y ) \overrightarrow{OB}=(x,y) OB =(x,y)。由数量积的两种运算方式可以得到 3 x + 4 y = 5 2 c o s 45 ° 3x+4y=5^2cos45° 3x+4y=52cos45°,由向量积(别名叉积、外积)的两种运算方式可以得到 3 y − 4 x = 5 2 s i n 45 ° 3y-4x=5^2sin45° 3y4x=52sin45°,解一元一次方程同样可以得到 B B B点的坐标。

但是,为什么不选择复数呢?
愚蠢的 H P HP HP:怎么使用复数?复数还有这种功能厚,那可真素棒棒。
聪明的 t x l txl txl:在处理旋转问题上复数一直很在行。我们刚刚不说了吗?复数在极坐标中的运算是“模长相乘,辐角相加”。辐角相加这句话,不就暗示你了吗?我们只需要把直角平面看成是复平面,配一个复数上去就可以了。
愚蠢的 H P HP HP:那该怎么选择这个复数厚,老娘,呸,老爹怎么知道惹。
聪明的 t x l txl txl:模长既然相乘,但我们知道旋转后的长度是不变的,所以复数的模长为 1 1 1,旋转了 45 ° 45° 45°,所以辐角为 45 ° 45° 45°,极坐标为 ( 1 , π 4 ) , (1,\frac{\pi}{4}), (1,4π),转换成复数就是 2 2 + 2 2 i \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i 22 +22 i。所以如果说把 A A A看作复数 3 + 4 i 3+4i 3+4i,那么 ( 3 + 4 i ) ( 2 2 + 2 2 i ) = − 2 2 + 7 2 2 i (3+4i)(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)=-\frac{\sqrt{2}}{2}+\frac{7\sqrt{2}}{2}i (3+4i)(22 +22 i)=22 +272 i就是 B B B点所表示的复数,所以恢复到平面直角坐标系中, B B B的坐标就是 ( − 2 2 , 7 2 2 ) (-\frac{\sqrt{2}}{2},\frac{7\sqrt{2}}{2}) (22 ,272 )
愚蠢的 H P HP HP:天啦噜!尿布可研!那乘上一个 i i i,是不是就是旋转 90 ° 90° 90°的意思?
聪明的 t x l txl txl:唷,会举一反三了嘛。而且,你说的这句话你必须牢牢记住,因为在后面证明的时候我会用到这条性质。但是,还有更妙的。你知道怎么求 x n = 1 x^n=1 xn=1的所有根吗?
愚蠢的 H P : … … HP:…… HP:不知道惹。

依然是运用模长相乘,辐角相加!
既然 x x x自乘 n n n次的模长为 1 1 1,那么说明 x x x的模长也为 1 1 1 x x x自乘 n n n次后得到的结果为 1 1 1,放在复平面里就是辐角为 2 k π ( k ∈ Z ) 2k\pi(k∈Z) 2kπ(kZ),所以如果 x x x的辐角为 θ \theta θ,则有 n θ = 2 k π , 即 n\theta=2k\pi,即 nθ=2kπ θ = 2 k π n \theta=\frac{2k\pi}{n} θ=n2kπ。两方面综合下来,结果就是单位圆上从 ( 1 , 0 ) (1,0) (1,0)开始的 n n n等分点所对应的复数!

愚蠢的 H P HP HP:我不信,我要检验。 n = 2 n=2 n=2的时候,单位圆从 ( 1 , 0 ) (1,0) (1,0)开始二等分得到的点为 ( 1 , 0 ) ( − 1 , 0 ) (1,0)(-1,0) (1,0)(1,0),对应的根为 ± 1 ±1 ±1,还真是两个根。 n = 3 n=3 n=3的时候,分到的结果是 ( 1 , 0 ) , ( − 1 2 , 3 2 ) , ( − 1 2 , − 3 2 ) (1,0),(-\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{1}{2},-\frac{\sqrt{3}}{2}) (1,0),(21,23 ),(21,23 ),第二个点对应的根为 − 1 2 + 3 2 i -\frac{1}{2}+\frac{\sqrt{3}}{2}i 21+23 i,三次方后的结果是 … … 1 ? ……1? 1另一个貌似也是对的 … … …… 太神奇了吧!
聪明的 t x l txl txl:你甚至可以试试求 4 3 + 4 i 3 \sqrt[3]{4\sqrt{3}+4i} 343 +4i 的结果。
愚蠢的 H P HP HP:我试试。

z = 4 3 + 4 i z=4\sqrt{3}+4i z=43 +4i化作极坐标为 ( 8 , π 6 ) (8,\frac{\pi}{6}) (8,6π)。如果说最终结果是 x x x,那么 x x x模长的立方为 8 8 8,也就是模长为 2 2 2。辐角为 θ \theta θ,则 3 θ = π 6 + 2 k π 3\theta=\frac{\pi}{6}+2k\pi 3θ=6π+2kπ,即 θ = π 18 + 2 k π 3 \theta=\frac{\pi}{18}+\frac{2k\pi}{3} θ=18π+32kπ。取 k = 0 , 1 , 2 k=0,1,2 k=0,1,2可以得到三个本质不同的 θ \theta θ值,则三个 2 c o s θ + 2 i s i n θ 2cos\theta+2isin\theta 2cosθ+2isinθ就是 z z z的立方根。应该取哪一个呢?

聪明的 t x l txl txl:在复数里,你可以称三个结果都是 4 3 + 4 i 3 \sqrt[3]{4\sqrt{3}+4i} 343 +4i 。看起来你掌握的不错嘛。

愚蠢的 H P HP HP:呕吼。
聪明的 t x l txl txl:既然你兴趣那么浓厚,那么我们把导数也讲了吧,因为后面可能要涉及到有关求导的知识。

欲知后事如何,请听下回因式分解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值