菜鸡HP的被虐日常(14)各种奇怪的不等式①

B y H o l y P u s h By\quad HolyPush ByHolyPush

聪明的 t x l txl txl看愚蠢的 H P HP HP被虐的那么惨,虽然有点想笑,但是还是有点于心不忍。所以他打算不再给愚蠢的 H P HP HP讲数列了(仅限这次),除非是非常好的题。

聪明的 t x l :    txl:\; txl:醒醒, H P HP HP,快起来做不等式了    ! \;! !
事实上,不等式可能比数列还难搞一点。
愚蠢的 H P    :    HP\;:\; HP:好啊,终于不讲数列了。不等式里有什么内容呢    ? \;? ?
聪明的 t x l :    txl:\; txl:嘻嘻,不等式内容很少的,我只讲以下内容    : \;: :
①均值不等式
②把对数放到均值不等式里
③柯西不等式
④权方和不等式
⑤琴生不等式
⑥排序不等式
⑦伯努利不等式
⑧舒尔不等式
⑨嵌入不等式
⑩赫尔德不等式
①① Y o u n g Young Young不等式
… … ……
愚蠢的 H P HP HP再次倒地不起。
聪明的 t x l : txl: txl:开个玩笑啦,其实我不会说那么多(其实是本人也不会)。但是有几个重要的,比如均值不等式和柯西不等式是必须掌握的。我们先来看看均值不等式吧。

聪明的 t x l : txl: txl:我们有一个很显然的结论是, a 2 + b 2 ≥ 2 a b a^2+b^2≥2ab a2+b22ab,当且仅当 a = b a=b a=b的时候取等。
愚蠢的 H P :    HP:\; HP:太过友善了!
聪明的 t x l : txl: txl:这个不等式非常重要,用于大多数不等式的证明。那既然你说很简单那我就直接列出来全部了。
2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 , \frac{2}{\frac{1}{a}+\frac{1}{b}}≤\sqrt{ab}≤\frac{a+b}{2}≤\sqrt{\frac{a^2+b^2}{2}}, a1+b12ab 2a+b2a2+b2 ,条件是 a > 0 , b > 0 a>0,b>0 a>0,b>0,取等条件是 a = b a=b a=b。用中文说出来这个式子,就是调和平均数 ≤ ≤ 几何平均数 ≤ ≤ 算术平均数 ≤ ≤ 平方平均数。证明过程只需要暴力展开用上面那个非常“友善”的不等式就可以了。

当然类似的,我们可以推广到 n n n维的形式,也就是
n ∑ i = 1 n 1 x i ≤ Π i = 1 n x i n ≤ ∑ i = 1 n x i n ≤ ∑ i = 1 n ( x i ) 2 n , x i > 0 \frac{n}{\sum_{i=1}^n\frac{1}{x_i}}≤\sqrt[n]{\Pi_{i=1}^nx_i}≤\frac{\sum_{i=1}^nx_i}{n}≤\sqrt{\frac{\sum_{i=1}^n(x_i)^2}{n}},x_i>0 i=1nxi1nnΠi=1nxi ni=1nxini=1n(xi)2 ,xi>0,当且仅当每一项都相等时取等。证明过程就略了,这不是今天的重点。

聪明的 t x l :    txl:\; txl:这些都很友善,那么让我们看看实际应用吧。

已知 x > 0 x>0 x>0,求 x 2 + 2 x x^2+\frac{2}{x} x2+x2的最小值。
愚蠢的 H P :    HP:\; HP:太简单惹难不倒我。 x 2 + 2 x = x 2 + 1 x + 1 x ≥ 3 x 2 × 1 x × 1 x 3 = 3 x^2+\frac{2}{x}=x^2+\frac{1}{x}+\frac{1}{x}≥3\sqrt[3]{x^2×\frac{1}{x}×\frac{1}{x}}=3 x2+x2=x2+x1+x133x2×x1×x1 =3,当且仅当 x = 1 x=1 x=1时取等。

聪明的 t x l :    txl:\; txl:小子不错嘛,那接下来就来点难的。其实也不难,就是求 y = s i n θ ( c o s θ − 1 ) , θ ∈ ( 0 , π ) y=sin\theta(cos\theta-1),\theta∈(0,\pi) y=sinθ(cosθ1),θ(0,π)的最小值。
愚蠢的 H P : HP: HP:当然是选择求导惹! y = 1 2 s i n 2 θ − s i n θ y=\frac{1}{2}sin2\theta-sin\theta y=21sin2θsinθ,则 y ′ = c o s 2 θ − c o s θ = − 2 s i n 3 θ 2 s i n θ 2 y'=cos2\theta-cos\theta=-2sin\frac{3\theta}{2}sin\frac{\theta}{2} y=cos2θcosθ=2sin23θsin2θ。令 y ′ = 0 y'=0 y=0,则 θ = 2 π 3 \theta=\frac{2\pi}{3} θ=32π。当 θ ∈ ( 0 , 2 π 3 ) \theta∈(0,\frac{2\pi}{3}) θ(0,32π)时, y ′ < 0 y'<0 y<0。当 θ ∈ ( 2 π 3 , π ) \theta∈(\frac{2\pi}{3},\pi) θ(32π,π)时, y ′ > 0 y'>0 y>0。所以 θ = 2 π 3 \theta=\frac{2\pi}{3} θ=32π就是取到最小值的点, y = − 3 3 4 y=-\frac{3\sqrt{3}}{4} y=433
聪明的 t x l : txl: txl:你求导这就有点犯规了,我们今天讲的毕竟是均值不等式,那有没有均值不等式的做法呢?
愚蠢的 H P : HP: HP:我暂时还想不到诶。
聪明的 t x l : txl: txl:这里要用到一个常用的配凑技巧,叫做待定系数法。

首先,显然 s i n θ > 0 , c o s θ − 1 < 0 sin\theta>0,cos\theta-1<0 sinθ>0,cosθ1<0,所以求原式的最小值只需要求 s i n θ ( 1 − c o s θ ) sin\theta(1-cos\theta) sinθ(1cosθ)的最大值就行,然后取个相反数。

我们希望用不等式能发现什么东西。
s i n θ ( 1 − c o s θ ) ≤ ( s i n θ − c o s θ + 1 2 ) 2 sin\theta(1-cos\theta)≤(\frac{sin\theta-cos\theta+1}{2})^2 sinθ(1cosθ)(2sinθcosθ+1)2
然后我们尝试着用辅助角公式求。
原式 ≤ ( 2 s i n ( θ − π 4 ) + 1 2 ) 2 ≤ ( 2 + 1 2 ) 2 … … ≤(\frac{\sqrt{2}sin(\theta-\frac{\pi}{4})+1}{2})^2≤(\frac{\sqrt{2}+1}{2})^2…… (22 sin(θ4π)+1)2(22 +1)2为什么和刚刚求的答案不一样    ? \;? ?
聪明的 t x l :    txl:\; txl:显然是取等条件错开了,也就是在第一个不等式取等条件成立时第二个不等式取不到等号。我们多么希望能够保证两边同时能取到等号!
所以我们用待定系数法!

设原式= 1 k × k s i n θ ( 1 − c o s θ ) ≤ 1 k × ( k s i n θ − c o s θ + 1 2 ) 2 = 1 k × ( k 2 + 1 s i n ( θ − ϕ ) + 1 2 ) 2 \frac{1}{k}×ksin\theta(1-cos\theta)≤\frac{1}{k}×(\frac{ksin\theta-cos\theta+1}{2})^2=\frac{1}{k}×(\frac{\sqrt{k^2+1}sin(\theta-\phi)+1}{2})^2 k1×ksinθ(1cosθ)k1×(2ksinθcosθ+1)2=k1×(2k2+1 sin(θϕ)+1)2
我们希望两边都能取到等号,也就是 k s i n θ = 1 − c o s θ , k s i n θ − c o s θ = k 2 + 1 ksin\theta=1-cos\theta,ksin\theta-cos\theta=\sqrt{k^2+1} ksinθ=1cosθ,ksinθcosθ=k2+1 两个式子成立。解方程得 k = 3 。 k=\sqrt{3}。 k=3 接下来我们就可以肆无忌惮地说:

原式= 1 3 × 3 s i n θ ( 1 − c o s θ ) ≤ 1 3 × ( 3 s i n θ − c o s θ + 1 2 ) 2 = 1 3 × ( ( 3 ) 2 + 1 s i n ( θ − π 6 ) + 1 2 ) 2 ≤ 3 3 4 \frac{1}{\sqrt{3}}×\sqrt{3}sin\theta(1-cos\theta)≤\frac{1}{\sqrt{3}}×(\frac{\sqrt{3}sin\theta-cos\theta+1}{2})^2=\frac{1}{\sqrt{3}}×(\frac{\sqrt{(\sqrt{3})^2+1}sin(\theta-\frac{\pi}{6})+1}{2})^2≤\frac{3\sqrt{3}}{4} 3 1×3 sinθ(1cosθ)3 1×(23 sinθcosθ+1)2=3 1×(2(3 )2+1 sin(θ6π)+1)2433 。所以它的最小值当然是 − 3 3 4 -\frac{3\sqrt{3}}{4} 433 咯。

愚蠢的 H P : HP: HP:原来如此吼。
聪明的 t x l : txl: txl:在均值不等式中还可以再插入一环,也就是对数。我们接下来研究的问题就是,导数的极值点偏移问题,一种高考压轴常考题型。

欲知后事如何,请听下回因式分解。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值