菜鸡HP的被虐日常(17)各种奇怪的不等式④

B y H o l y P u s h By\quad HolyPush ByHolyPush

愚蠢的 H P HP HP看起来对排序不等式极为感兴趣,抓着聪明的 t x l txl txl的三条腿(众所周知聪明的 t x l txl txl是神仙,神仙是可以和常人不一样的),要求他给自己讲排序不等式。

聪明的 t x l :    txl:\; txl:好吧好吧你太烦了。

所谓排序不等式,就是有两个都为 n n n项的数列 { a n } , { b n } \{a_n\},\{b_n\} {an},{bn}。将这两个数列任意排序,那么当两个数列都是从小到大排或者都是从大到小排的时候, ∑ i = 1 n a i b i \sum_{i=1}^na_ib_i i=1naibi最大,当两个数列一个从小到大排一个从大到小排的时候, ∑ i = 1 n a i b i \sum_{i=1}^na_ib_i i=1naibi最小。
简单地来说,就是正序和≥乱序和≥反序和。

举个例子,数列 { a n } \{a_n\} {an} − 2 , 1 , 4 , 5 -2,1,4,5 2,1,4,5这四项, { b n } \{b_n\} {bn} − 3 , − 2 , 1 , 2 -3,-2,1,2 3,2,1,2这四项,我们对其进行排序。
当我们的排序结果为
− 2 , 1 , 4 , 5 -2,1,4,5 2,1,4,5
− 3 , − 2 , 1 , 2 -3,-2,1,2 3,2,1,2
时, ∑ i = 1 n a i b i \sum_{i=1}^na_ib_i i=1naibi= ( − 2 ) × ( − 3 ) + 1 × ( − 2 ) + 4 × 1 + 5 × 2 = 18 (-2)×(-3)+1×(-2)+4×1+5×2=18 (2)×(3)+1×(2)+4×1+5×2=18最大。
当我们的排序结果为
− 2 , 1 , 4 , 5 -2,1,4,5 2,1,4,5
2 , 1 , − 2 , − 3 2,1,-2,-3 2,1,2,3
时, ∑ i = 1 n a i b i \sum_{i=1}^na_ib_i i=1naibi= ( − 2 ) × 2 + 1 × 1 + 4 × ( − 2 ) + 5 × ( − 3 ) = − 26 (-2)×2+1×1+4×(-2)+5×(-3)=-26 (2)×2+1×1+4×(2)+5×(3)=26最小。
当我们排序很随意的时候,比如
− 2 , 4 , 1 , 5 -2,4,1,5 2,4,1,5
2 , − 3 , 1 , − 2 2,-3,1,-2 2,3,1,2
时, ∑ i = 1 n a i b i \sum_{i=1}^na_ib_i i=1naibi= ( − 2 ) × 2 + 4 × ( − 3 ) + 1 × 1 + 5 × ( − 2 ) = − 25 (-2)×2+4×(-3)+1×1+5×(-2)=-25 (2)×2+4×(3)+1×1+5×(2)=25处于两者之间。
聪明的 t x l :    txl:\; txl:用排序不等式可以证明非常多的不等式,例如均值、切比雪夫这些,都可以用排序不等式进行证明。重要的就是找出两个项数相等的数列。

愚蠢的 H P :    HP:\; HP:这个不等式看起来好记多了厚。
聪明的 t x l :    txl:\; txl:那我们先试试用用看吧。比如,上一次写的一个非常经典的不等式 a 2 + b 2 + c 2 ≥ a b + a c + b c a^2+b^2+c^2≥ab+ac+bc a2+b2+c2ab+ac+bc,你试着用排序不等式证证吧。
愚蠢的 H P :    HP:\; HP:由于三者是轮换对称的,所以不妨设 a ≥ b ≥ c a≥b≥c abc。那么 a 2 + b 2 + c 2 a^2+b^2+c^2 a2+b2+c2就是正序和, a b + a c + b c ab+ac+bc ab+ac+bc就是乱序和。所以原式就成立了。太简单了厚。
聪明的 t x l :    txl:\; txl:让我再想一道题吧。

已知 a , b , c a,b,c a,b,c都是正数,证明 c 2 − a 2 a + b + a 2 − b 2 b + c + b 2 − c 2 c + a ≥ 0 \frac{c^2-a^2}{a+b}+\frac{a^2-b^2}{b+c}+\frac{b^2-c^2}{c+a}≥0 a+bc2a2+b+ca2b2+c+ab2c20
愚蠢的 H P :    HP:\; HP:显然我们可以试着构造两个数列,
a 1 = c 2 − a 2 , a 2 = a 2 − b 2 , a 3 = b 2 − c 2 a_1=c^2-a^2,a_2=a^2-b^2,a_3=b^2-c^2 a1=c2a2,a2=a2b2,a3=b2c2
b 1 = 1 a + b , b 2 = 1 b + c , b 3 = 1 c + a b_1=\frac{1}{a+b},b_2=\frac{1}{b+c},b_3=\frac{1}{c+a} b1=a+b1,b2=b+c1,b3=c+a1
不妨设 a ≥ b ≥ c a≥b≥c abc,则可以发现 { a n } \{a_n\} {an} … … …… 貌似不能确定是什么顺序    ? \;? ?
聪明的 t x l :    txl:\; txl:笨,你为什么不把减号移到右边去呢    ? \;? ?

原式即证 c 2 a + b + a 2 b + c + b 2 c + a ≥ a 2 a + b + b 2 b + c + c 2 c + a \frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}≥\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a} a+bc2+b+ca2+c+ab2a+ba2+b+cb2+c+ac2
那么像刚刚那样构造数列
a 1 = c 2 , a 2 = b 2 , a 3 = a 2 a_1=c^2,a_2=b^2,a_3=a^2 a1=c2,a2=b2,a3=a2
b 1 = 1 a + b , b 2 = 1 c + a , b 3 = 1 b + c b_1=\frac{1}{a+b},b_2=\frac{1}{c+a},b_3=\frac{1}{b+c} b1=a+b1,b2=c+a1,b3=b+c1,设 a ≥ b ≥ c > 0 a≥b≥c>0 abc>0,则 { a n } \{a_n\} {an} { b n } \{b_n\} {bn}都是从小到大排序的,是正序和,而右边的式子则是乱序和,所以左边大于等于右边。

愚蠢的 H P :    HP:\; HP:看起来排序不等式的题都很简单的样子。
聪明的 t x l :    txl:\; txl:并不,有些题目里面要写很多个正序≥乱序≥反序的不等式加起来才能看出结果,有些题目则很难看出该怎么拆要证的式子,并不一定会很简单,但不可否认它的确非常有用。

欲知后事如何,请听下回因式分解。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值