菜鸡HP的被虐日常(16)各种奇怪的不等式③

B y H o l y P u s h By\quad HolyPush ByHolyPush

聪明的 t x l :    txl:\; txl:接下来就是柯西不等式。它的一般形式是    : ( a 2 + b 2 ) ( c 2 + d 2 ) ≥ ( a c + b d ) 2 \;:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2 :(a2+b2)(c2+d2)(ac+bd)2,当且仅当 a c = b d \frac{a}{c}=\frac{b}{d} ca=db时等号成立。

愚蠢的 H P :    HP:\; HP:看起来挺显然的,让我先来试着证明一下。
( a 2 + b 2 ) ( c 2 + d 2 ) − ( a c + b d ) 2 = a 2 d 2 + b 2 c 2 − 2 a b c d = ( a d − b c ) 2 ≥ 0 (a^2+b^2)(c^2+d^2)-(ac+bd)^2=a^2d^2+b^2c^2-2abcd=(ad-bc)^2≥0 (a2+b2)(c2+d2)(ac+bd)2=a2d2+b2c22abcd=(adbc)20,当且仅当 a d = b c ad=bc ad=bc时成立。如果 c , d c,d c,d非零的话,就是 a c = b d \frac{a}{c}=\frac{b}{d} ca=db

聪明的 t x l : txl: txl:很聪明,但事实上柯西不等式可以拓展到多维,也就是 ( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) ≥ ( ∑ i = 1 n a i b i ) 2 (\sum_{i=1}^na^2_i)(\sum_{i=1}^nb^2_i)≥(\sum_{i=1}^na_ib_i)^2 (i=1nai2)(i=1nbi2)(i=1naibi)2。这该如何证明呢?
愚蠢的 H P HP HP如同喉咙被鱼刺卡住了一样说不出话。
聪明的 t x l :    txl:\; txl:我们看看这个结构。左边是平方和的积,右边是积的和的平方。平方和的积,看起来很像是模长。而积的和,看起来又像是数量积的算法 … … ……
愚蠢的 H P :    HP:\; HP:我们看起来可以构造一个向量 a ⃗ = ( a 1 , a 2 , . . . , a n ) , b ⃗ = ( b 1 , b 2 , . . , b n ) \vec{a}=(a_1,a_2,...,a_n),\vec{b}=(b_1,b_2,..,b_n) a =(a1,a2,...,an),b =(b1,b2,..,bn)
数量积有两种计算方法。
第一种是用定义,即模长之积乘以夹角的余弦值。第二种是利用数量积的坐标计算方法。而两种计算方法的结果显然是一样的。为了靠近我们要证的式子,不妨给两边都平方一下。
( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) c o s 2 θ = ( ∑ i = 1 n a i b i ) 2 (\sum_{i=1}^na^2_i)(\sum_{i=1}^nb^2_i)cos^2θ=(\sum_{i=1}^na_ib_i)^2 (i=1nai2)(i=1nbi2)cos2θ=(i=1naibi)2。左边的式子乘上一个余弦的平方才跟右边一样,而余弦的平方显然在 [ 0 , 1 ] [0,1] [0,1]之间。所以 ( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) ≥ ( ∑ i = 1 n a i b i ) 2 (\sum_{i=1}^na^2_i)(\sum_{i=1}^nb^2_i)≥(\sum_{i=1}^na_ib_i)^2 (i=1nai2)(i=1nbi2)(i=1naibi)2
聪明的 t x l :    txl:\; txl:没错。而且从证明过程来看可以发现,柯西不等式的应用范围不像均值不等式那样局限于正数,负数也满足柯西不等式。

愚蠢的 H P :    HP:\; HP:所以柯西不等式有什么用吗    ? \;? ?
聪明的 t x l :    txl:\; txl:你是不是每次都要问一遍这个问题    ? \;? ?
愚蠢的 H P :    HP:\; HP:是的嘻嘻。
聪明的 t x l :    txl:\; txl:唉算了,那就给你一道简单的题看看吧。

5 x + 2 4 − x 2 5x+2\sqrt{4-x^2} 5x+24x2 的最值。
愚蠢的 H P :    HP:\; HP:看到根号下是常数减去未知数的平方的结构,难道不应该第一时间想到的是三角换元吗    ? \;? ?

x = 2 s i n θ , θ ∈ [ − π 2 , π 2 ] x=2sin\theta,\theta∈[-\frac{\pi}{2},\frac{\pi}{2}] x=2sinθ,θ[2π,2π],则原式= 10 s i n θ + 4 c o s θ = 2 29 s i n ( θ + ϕ ) , t a n ϕ = 2 5 10sin\theta+4cos\theta=2\sqrt{29}sin(\theta+\phi),tan\phi=\frac{2}{5} 10sinθ+4cosθ=229 sin(θ+ϕ),tanϕ=52。显然 θ = π 2 − ϕ \theta=\frac{\pi}{2}-\phi θ=2πϕ的时候取最大值 2 29 2\sqrt{29} 229 θ = ϕ − π 2 \theta=\phi-\frac{\pi}{2} θ=ϕ2π时取最小值 − 10 。 -10。 10

聪明的 t x l : txl: txl:不错,但是我们今天学的是柯西不等式。我们应该想一想有没有柯西不等式的做法。

我们发现这个式子很像 a c + b d ac+bd ac+bd的样子。那我们平方一下。
( 5 x + 2 4 − x 2 ) 2 ≤ ( 5 2 + 2 2 ) ( x 2 + 4 − x 2 ) = 4 × 29 (5x+2\sqrt{4-x^2})^2≤(5^2+2^2)(x^2+4-x^2)=4×29 (5x+24x2 )2(52+22)(x2+4x2)=4×29,而取等条件是 x 4 − x 2 = 5 2 \frac{x}{\sqrt{4-x^2}}=\frac{5}{2} 4x2 x=25,所以开平方根的时候应该取正值,也就是 5 x + 2 4 − x 2 ≤ 2 29 5x+2\sqrt{4-x^2}≤2\sqrt{29} 5x+24x2 229
但最小值一侧用不等式貌似有点麻烦,我们不如看一下单调性。
显然最小值肯定在在 x < 0 x<0 x<0的时候取到,此时 5 x 5x 5x是单调递增的, 4 − x 2 \sqrt{4-x^2} 4x2 也是单调递增的,所以整个函数都是单调递增的。而 4 − x 2 ≥ 0 4-x^2≥0 4x20,也就是 − 2 ≤ x ≤ 2 -2≤x≤2 2x2,所以 x = − 2 x=-2 x=2时取最小值 − 10 -10 10,和你三角换元的结果是一样的。
愚蠢的的 H P :    HP:\; HP:这么看来,柯西不等式貌似是比三角换元方便一点。

聪明的 t x l :    txl:\; txl:说句跟今天无关的东西,和这个结构类似,你知道怎么求 5 x + 2 x 2 − 4 5x+2\sqrt{x^2-4} 5x+2x24 的在 x < 0 x<0 x<0时的最大值吗    ? \;? ?
愚蠢的 H P :    HP:\; HP:还是可以用三角换元,但用到的式子是 t a n 2 θ + 1 = 1 c o s 2 θ tan^2\theta+1=\frac{1}{cos^2\theta} tan2θ+1=cos2θ1,然后利用之前学过的知识就可以了,但是这样太麻烦了。
聪明的 t x l :    txl:\; txl:没错是太麻烦了。这里我们介绍一种双曲代换的做法。

和三角函数类似,我们定义 sinh ⁡ x = e x − e − x 2 , cosh ⁡ x = e x + e − x 2 , tanh ⁡ x = e x − e − x e x + e − x \sinh x=\frac{e^x-e^{-x}}{2},\cosh x=\frac{e^x+e^{-x}}{2},\tanh x=\frac{e^x-e^{-x}}{e^x+e^{-x}} sinhx=2exex,coshx=2ex+ex,tanhx=ex+exexex。然后我们会发现它们的性质和三角函数极为相似,例如:
同角关系 :    cosh ⁡ 2 x − sinh ⁡ 2 x = 1 , tanh ⁡ x = sinh ⁡ x cosh ⁡ x :\;\cosh^2 x-\sinh^2x=1,\tanh x=\frac{\sinh x}{\cosh x} :cosh2xsinh2x=1,tanhx=coshxsinhx
和角公式 :    sinh ⁡ ( x + y ) = sinh ⁡ x cosh ⁡ y + cosh ⁡ x sinh ⁡ y ; cosh ⁡ ( x + y ) = cosh ⁡ x cosh ⁡ y + sinh ⁡ x sinh ⁡ y ; tanh ⁡ ( x + y ) = tanh ⁡ x + tanh ⁡ y 1 + tanh ⁡ x tanh ⁡ y :\;\sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y;\quad \cosh(x+y)=\cosh x\cosh y+\sinh x\sinh y;\quad \tanh (x+y)=\frac{\tanh x+\tanh y}{1+\tanh x\tanh y} :sinh(x+y)=sinhxcoshy+coshxsinhy;cosh(x+y)=coshxcoshy+sinhxsinhy;tanh(x+y)=1+tanhxtanhytanhx+tanhy
差角公式 :    sinh ⁡ ( x − y ) = sinh ⁡ x cosh ⁡ y − cosh ⁡ x sinh ⁡ y ; cosh ⁡ ( x − y ) = cosh ⁡ x cosh ⁡ y − sinh ⁡ x sinh ⁡ y ; tanh ⁡ ( x − y ) = tanh ⁡ x − tanh ⁡ y 1 − tanh ⁡ x tanh ⁡ y :\;\sinh(x-y)=\sinh x\cosh y-\cosh x\sinh y;\quad \cosh(x-y)=\cosh x\cosh y-\sinh x\sinh y;\quad \tanh (x-y)=\frac{\tanh x-\tanh y}{1-\tanh x\tanh y} :sinh(xy)=sinhxcoshycoshxsinhy;cosh(xy)=coshxcoshysinhxsinhy;tanh(xy)=1tanhxtanhytanhxtanhy

实在是太像了,但是在符号上还是有一点细微区别。当然,这个 e e e在双曲代换中其实没那么重要,所以我们可以换成任意其他正数。

好了,我们试着用双曲代换来解决这个问题。
我们设 x = t + 1 t , t ≤ − 1 x=t+\frac{1}{t},t≤-1 x=t+t1,t1。(设 t ≤ − 1 t≤-1 t1是因为 − 1 < t < 0 -1<t<0 1<t<0的时候和 t < − 1 t<-1 t<1的时候值域是一样的,而且后面处理问题也会方便)则原式 = 5 t + 5 t − t + 1 t = 4 t + 6 t =5t+\frac{5}{t}-t+\frac{1}{t}=4t+\frac{6}{t} =5t+t5t+t1=4t+t6。根据图像我们可以判断 t = − 6 2 t=-\frac{\sqrt{6}}{2} t=26 的时候取到一个最大值 − 4 6 -4\sqrt{6} 46 。就是这样。

再来看看这个。
已知实数 x , y x,y x,y满足 x 2 + y 2 = 20 x^2+y^2=20 x2+y2=20,则 x y + 8 x + y xy+8x+y xy+8x+y的最大值是多少。

愚蠢的 H P : HP: HP:这不是还是可以用三角换元吗    ? \;? ?
于是愚蠢的 H P HP HP做到聪明的 t x l txl txl体重降为 0 0 0的时候也没做出来。
聪明的 t x l :    txl:\; txl:孺子不可教也,刚刚这题和这题不是几乎一样吗    ? \;? ?

它看上去很像是 ( a b + c d + e f ) (ab+cd+ef) (ab+cd+ef)的结构,联想到柯西不等式的多维形式,稍微给它排列组合一下就是
( x y + 8 x + y × 1 ) 2 ≤ ( x 2 + 8 2 + y 2 ) ( y 2 + x 2 + 1 2 ) = 84 × 21 = 4 2 2 (xy+8x+y×1)^2≤(x^2+8^2+y^2)(y^2+x^2+1^2)=84×21=42^2 (xy+8x+y×1)2(x2+82+y2)(y2+x2+12)=84×21=422,所以原式最大值是 42 42 42

聪明的 t x l :    txl:\; txl:其实我想说明的是,看到这种结构比较简单,次数比较低,又有很多个字母让我们求某个式子最值的问题,我们可以有一种新奇的方法,叫做拉格朗日乘数法,

已知 n n n个字母 a i , i = 1 , 2 , . . . , n a_i,i=1,2,...,n ai,i=1,2,...,n,它们之间满足很多个约束条件 f i ( a 1 , a 2 , . . . a n ) = C i , C i f_i(a_1,a_2,...a_n)=C_i,C_i fi(a1,a2,...an)=Ci,Ci为常数,让我们求函数 g ( a 1 , a 2 , . . . , a n ) g(a_1,a_2,...,a_n) g(a1,a2,...,an)的最值,我们可以用拉格朗日乘数法来解决。具体步骤是    : \;: :
① ① 构造函数 h ( a 1 , a 2 , . . . a n ) = g ( a 1 , a 2 , . . . , a n ) + ∑ i = 1 m λ i f i ( a 1 , a 2 , . . . , a n ) h(a_1,a_2,...a_n)=g(a_1,a_2,...,a_n)+\sum_{i=1}^m\lambda_if_i(a_1,a_2,...,a_n) h(a1,a2,...an)=g(a1,a2,...,an)+i=1mλifi(a1,a2,...,an)。其中 λ i \lambda_i λi是我们设的一个新的未知数。
② ② 以每一个字母为主元对该函数求偏导(也就是假设这个字母是自变量,其他字母均看作常数,然后求导),令偏导后的结果为 0 0 0,与原来本身就有的 m m m个方程联立。
③ ③ 解出每个字母的值,代入我们的原式就是我们要的极值了 ( ( (最值仍应从这几个极值里面挑选,而且求出的极值中也不一定有我们要的最大值或最小值,但大多数情况下都八九不离十了 ) ) )

回到上面的题目中去,我们按照步骤一个一个来。
① ① 构造函数 h ( x ) = x y + 8 x + y + λ ( x 2 + y 2 ) h(x)=xy+8x+y+\lambda (x^2+y^2) h(x)=xy+8x+y+λ(x2+y2)
② ② y y y看成常数,对 x x x求偏导,有 y + 8 + 2 λ x = 0 y+8+2\lambda x=0 y+8+2λx=0。把 x x x看成常数,对 y y y求偏导,有 x + 1 + 2 λ y = 0 x+1+2\lambda y=0 x+1+2λy=0。再加上原来就有的 x 2 + y 2 = 20 x^2+y^2=20 x2+y2=20,组成一个三元方程组,解方程即可。

愚蠢的 H P :    HP:\; HP:这个方程未免也太复杂了一点吧    ! \;! !
聪明的 t x l :    txl:\; txl:没办法 ,一般方法越无脑计算量就越大,要用拉格朗日乘数法,必然要拥有较强的解方程能力。那让我们看看怎么解这个方程吧。
显然我们不想要 λ \lambda λ这个值的出现,所以我们可以单独把所有有 λ \lambda λ的项留在左边,其他都移到右边去。
{ 2 λ x = − y − 8 2 λ y = − x − 1 \begin{cases} 2\lambda x=-y-8 \\ 2\lambda y=-x-1 \end{cases} {2λx=y82λy=x1
两式相除,得 x y = y + 8 x + 1 \frac{x}{y}=\frac{y+8}{x+1} yx=x+1y+8,即 x 2 + x − y 2 − 8 y = 0 x^2+x-y^2-8y=0 x2+xy28y=0。我们用 x 2 + y 2 = 20 x^2+y^2=20 x2+y2=20将其中的某一项的二次项去掉,留下一个一次项,然后把这个一次项用另一个未知数再代回到 x 2 + y 2 = 20 x^2+y^2=20 x2+y2=20这个式子中去。具体方程就不解了,解出来的结果可以发现 x = 4 , y = 2 x=4,y=2 x=4,y=2的时候最大,是 42 42 42。(我不会告诉你是因为我觉得四次方程太难解所以直接用结论的,但是通过试根法应该能解出来)

聪明的 t x l : txl: txl:上面的都太小儿科了,接下来我们再来看看一道套路题。
求证 : a a + 2 b + c + b a + b + 2 c + c 2 a + b + c ≥ 3 4 , :\frac{a}{a+2b+c}+\frac{b}{a+b+2c}+\frac{c}{2a+b+c}≥\frac{3}{4}, :a+2b+ca+a+b+2cb+2a+b+cc43其中 a , b , c > 0 a,b,c>0 a,b,c>0

聪明的 t x l :    txl:\; txl:首先我要给出一个很经典的结论,就是 a 2 + b 2 + c 2 ≥ a b + b c + c a a^2+b^2+c^2≥ab+bc+ca a2+b2+c2ab+bc+ca。证明很简单,可以两边同时乘以二,右边移到左边去然后配成三个完全平方式,也可以利用后面会提到的排序不等式,根据正序和≥乱序和可以直接得出这个结论。

看到这种形式的式子,我们一般的套路是配上每个分母的和,或者配上每个分母与分子之积的和,然后利用柯西不等式。

( a a + 2 b + c + b a + b + 2 c + c 2 a + b + c ) [ a ( a + 2 b + c ) + b ( a + b + 2 c ) + c ( 2 a + b + c ) ] ≥ ( a + b + c ) 2 (\frac{a}{a+2b+c}+\frac{b}{a+b+2c}+\frac{c}{2a+b+c})[a(a+2b+c)+b(a+b+2c)+c(2a+b+c)]≥(a+b+c)^2 (a+2b+ca+a+b+2cb+2a+b+cc)[a(a+2b+c)+b(a+b+2c)+c(2a+b+c)](a+b+c)2
所以有 a a + 2 b + c + b a + b + 2 c + c 2 a + b + c ≥ a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a a 2 + b 2 + c 2 + 3 a b + 3 b c + 3 c a = 1 − a b + b c + c a a 2 + b 2 + c 2 + 3 a b + 3 b c + 3 c a ≥ 1 − a b + b c + c a 4 ( a b + b c + c a ) = 3 4 \frac{a}{a+2b+c}+\frac{b}{a+b+2c}+\frac{c}{2a+b+c}≥\frac{a^2+b^2+c^2+2ab+2bc+2ca}{a^2+b^2+c^2+3ab+3bc+3ca}=1-\frac{ab+bc+ca}{a^2+b^2+c^2+3ab+3bc+3ca}≥1-\frac{ab+bc+ca}{4(ab+bc+ca)}=\frac{3}{4} a+2b+ca+a+b+2cb+2a+b+cca2+b2+c2+3ab+3bc+3caa2+b2+c2+2ab+2bc+2ca=1a2+b2+c2+3ab+3bc+3caab+bc+ca14(ab+bc+ca)ab+bc+ca=43。证明完毕。

聪明的 t x l :    txl:\; txl:运用柯西不等式,实际上就是要凑出一个看起来合理的结构。总之,柯西不等式用处十分广泛,是需要好好掌握的一种不等式。

欲知后事如何,请听下回因式分解。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值