菜鸡HP的被虐日常(7)当扩大n倍以后……③

B y H o l y P u s h By\quad HolyPush ByHolyPush

愚蠢的 H P HP HP:导数 ? ? ?听起来很高级的样子。我之前听说它是处理函数的一个极好的工具。
聪明的 t x l txl txl:没错。导数是微积分中的一个重要的概念,但你不需要因为“微积分”这个词而感到害怕,因为在高中不学微积分,就算学了也只考非常简单的部分。那导数是什么意思呢?导数,你可以理解为是一种“瞬间变化率”。例如,物理中的位移的瞬间变化率是速度,速度的瞬间变化率是加速度……如果将位移、速度、加速度(假设是连续不断的)写成是时间的函数形式,记作 f ( t ) , g ( t ) , h ( t ) f(t),g(t),h(t) f(t),g(t),h(t),将 f ′ ( t ) f'(t) f(t)记作 f ( t ) f(t) f(t)的导函数,那么在任何一个时间 t 0 t_0 t0,都满足 f ′ ( t 0 ) = g ( t 0 ) , g ′ ( t 0 ) = h ( t 0 ) f'(t_0)=g(t_0),g'(t_0)=h(t_0) f(t0)=g(t0),g(t0)=h(t0)
愚蠢的 H P HP HP e m m m emmm emmm不懂。
聪明的 t x l txl txl:呃 … … …… 通俗的说,函数在某一点上的导数就是这个函数图像在这个点上的切线斜率。
愚蠢的 H P HP HP e m m m emmm emmm(假装懂了)。
聪明的 t x l txl txl:对于某一个函数 f ( t ) f(t) f(t),对其求导得到的函数 f ′ ( t ) f'(t) f(t),满足在 ( t , f ( t ) ) (t,f(t)) (t,f(t))点上的切线斜率为 f ′ ( t ) f'(t) f(t)。然后我们要做的就是求出这个 f ′ ( t ) f'(t) f(t)

先来看一次函数吧。
在这里插入图片描述
愚蠢的 H P HP HP:这个函数的解析式为 y = 3 x + 4 。 y=3x+4。 y=3x+4从定义上看的话……图像上每个点的切线斜率应该都是 3 3 3。所以 y ′ = 3 y'=3 y=3
聪明的 t x l txl txl:没错。但如果它是一个二次函数, y = x 2 + 2 x + 3 y=x^2+2x+3 y=x2+2x+3 ? ? ?算了先简单一点, y = 2 x 2 y=2x^2 y=2x2 ? ? ?
愚蠢的 H P HP HP::我想想 … … …… 它是一条抛物线,从物理意义上看的话,我们可以把它看作是一个倒着的平抛运动。设初速度为 v 0 v_0 v0,则 t t t秒后, x = v 0 t , y = 1 2 g t 2 x=v_0t,y=\frac{1}{2}gt^2 x=v0t,y=21gt2。消去参数 t t t得到 y = g 2 v 0 2 x 2 y=\frac{g}{2v_0^2}x^2 y=2v02gx2。则 2 = g 2 v 0 2 , v 0 = g 2 2=\frac{g}{2v_0^2},v_0=\frac{\sqrt{g}}{2} 2=2v02g,v0=2g 。在某个时刻 t t t v x = v 0 , v y = g t v_x=v_0,v_y=gt vx=v0,vy=gt。再因为此处切线的斜率即为合速度的斜率,所以 f ′ ( v 0 t ) = v y v x f'(v_0t)=\frac{v_y}{v_x} f(v0t)=vxvy。令 x = v 0 t x=v_0t x=v0t,则得到 f ′ ( x ) = 4 x f'(x)=4x f(x)=4x。美妙厚!
聪明的 t x l txl txl:聪明嘛,居然能想到用物理意义求抛物线的导数。但是我问你,我刚刚说位移的导数是速度,那你为什么这里求的是速度的斜率而不求速度的大小呢?
愚蠢的 H P HP HP:这个问题……我也不清楚。为什么惹?
聪明的 t x l txl txl:这里有一个误区就是,位移和速度都是矢量。我们所说的 “ “ 位移 " " " " " "速度 " " ",要么都说是方向,要么都说是大小。我们画的图像是物体运动过程中的“位置”,是一种方向的性质,所以我们也要求速度的“方向”,也就是斜率。如果我们给出的图像是位移大小 x x x关于时间 t t t的函数图像,那么我们求导后的结果才是瞬时速度 v v v关于时间 t t t的大小。但是,抛物线可以这么求,你其他的函数都应该怎么求呢?
愚蠢的 H P HP HP:那我好像还真没办法了。
聪明的 t x l txl txl:这里我们就要运用到极限的思想了。

求点 ( x , f ( x ) ) (x,f(x)) (x,f(x))处的切线斜率,我们取一个非常小的增量 Δ x \Delta x Δx。则切线斜率 y ′ = f ( x + Δ x ) − f ( x ) Δ x y'=\frac{f(x+\Delta x)-f(x)}{\Delta x} y=Δxf(x+Δx)f(x)。比如题目中的 y = 2 x 2 y=2x^2 y=2x2,则 y ′ = 2 ( x + Δ x ) 2 − 2 x 2 Δ x = 4 x + 2 Δ x y'=\frac{2(x+\Delta x)^2-2x^2}{\Delta x}=4x+2\Delta x y=Δx2(x+Δx)22x2=4x+2Δx。因为 Δ x \Delta x Δx非常小,所以我们可以看作是 0 0 0,所以 y ′ = 4 x y'=4x y=4x

愚蠢的 H P : HP: HP不对啊,你一开始说 Δ x \Delta x Δx是一个很小的增量,理论上来说不应该为 0 0 0,但最后又看作是 0 0 0是几个意思?
聪明的 t x l txl txl:这的确是一个问题。当初牛顿和莱布尼茨创立微积分概念的时候就是有人提出了这样一个疑问,一开始说增量不为 0 0 0后来却说可以看作 0 0 0,而引起了第二次数学危机。至于后来是怎么处理的,你可以自己去查资料,这不是我们的重点。
愚蠢的 H P : HP: HP嗷。
聪明的 t x l txl txl:现在你可以试试求 y = x n y=x^n y=xn的导数了。
愚蠢的 H P HP HP:根据定义,分母中的 x n x^n xn次项在相减的时候会消掉,最后拆开来的每个项中都含有一个 Δ x \Delta x Δx因子,除去分母中的 Δ x \Delta x Δx后,除了第二项 k x n − 1 kx^{n-1} kxn1不含有 Δ x \Delta x Δx之外,其他的都含有,当做 0 0 0处理。所以最后的结果就是 k x n − 1 kx^{n-1} kxn1。但 k k k是几我不知道。
聪明的 t x l txl txl:这需要用到一些二项式定理的知识,这里我可以告诉你的是这个 k = n k=n k=n。所以求导的结果就是 y ′ = n x n − 1 y'=nx^{n-1} y=nxn1。但是你这种证明方法只适用于正整数,虽然这个式子对任意 n n n都成立,包括负数和分数,甚至无理数。解决方案,其实我也不知道 … … ……

然后,就让我们看看, k f ( x ) kf(x) kf(x)的导数是多少。这已经有点过于显然了,导数就是 k f ′ ( x ) kf'(x) kf(x)

然后再让我们看看, f ( x ) + C f(x)+C f(x)+C的导数是多少( C C C为常数)。根据定义也很显然,这个常数并不会有什么影响。所以导数就是 f ′ ( x ) f'(x) f(x)

再让我们看看, f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x)的导数是多少。根据定义,我们依然能很快发现导数就是 f ′ ( x ) + g ′ ( x ) f'(x)+g'(x) f(x)+g(x)

现在,试试看求 y = 3 x 3 − 6 x + 4 y=3x^3-6x+4 y=3x36x+4的导数。

愚蠢的 H P HP HP:可以把这个函数拆成三个部分。每一部分分别求导得 9 x 2 , − 6 , 0 9x^2,-6,0 9x2,6,0,所以加起来得 y ′ = 9 x 2 − 6 y'=9x^2-6 y=9x26
聪明的 t x l txl txl:不错,接下来让我们看看导数的乘除法,以及复合函数的求导。

已知函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),求 ( f ⋅ g ) ′ ( x ) , (f·g)'(x), (fg)(x),或者说 [ f ( x ) g ( x ) ] ′ [f(x)g(x)]' [f(x)g(x)]
根据定义, y ′ = f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x = f ( x + Δ x ) g ( x + Δ x ) − f ( x + Δ x ) g ( x ) + f ( x + Δ x ) g ( x ) − f ( x ) g ( x ) Δ x = f ( x + Δ x ) [ g ( x + Δ x ) − g ( x ) ] Δ x + g ( x ) [ f ( x + Δ x ) − f ( x ) ] Δ x = f ( x + Δ x ) g ′ ( x ) + g ( x ) f ′ ( x ) y'=\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}=\frac{f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)+f(x+\Delta x)g(x)-f(x)g(x)}{\Delta x}=\frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]}{\Delta x}+\frac{g(x)[f(x+\Delta x)-f(x)]}{\Delta x}=f(x+\Delta x)g'(x)+g(x)f'(x) y=Δxf(x+Δx)g(x+Δx)f(x)g(x)=Δxf(x+Δx)g(x+Δx)f(x+Δx)g(x)+f(x+Δx)g(x)f(x)g(x)=Δxf(x+Δx)[g(x+Δx)g(x)]+Δxg(x)[f(x+Δx)f(x)]=f(x+Δx)g(x)+g(x)f(x)。由于 Δ x \Delta x Δx很小可以看作 0 0 0,所以 y ′ = f ( x ) g ′ ( x ) + f ′ ( x ) g ( x ) y'=f(x)g'(x)+f'(x)g(x) y=f(x)g(x)+f(x)g(x)

除法就不推导了,方法是类似的,如果 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)分别为分子和分母,得到的结果是 y ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) y'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} y=g2(x)f(x)g(x)f(x)g(x)

复合函数的求导,即求 f ( g ( x ) ) f(g(x)) f(g(x))的导数。我们为了方便起见,设 u = g ( x ) , Δ u , Δ x , Δ y u=g(x),\Delta u,\Delta x,\Delta y u=g(x),Δu,Δx,Δy分别表示变化量。则根据定义有: y ′ = Δ y Δ x = Δ u Δ x × Δ y Δ u = g ′ ( x ) f ′ ( g ( x ) ) y'=\frac{\Delta y}{\Delta x}=\frac{\Delta u}{\Delta x}×\frac{\Delta y}{\Delta u}=g'(x)f'(g(x)) y=ΔxΔy=ΔxΔu×ΔuΔy=g(x)f(g(x))。如此,复合函数的求导法则我们称作链式法则。运算的时候,你可以选择像剥洋葱皮那样,一步一步剥出来。步骤是,把其中一些比较复杂的函数设成一个新的字母,写出若干个式子后分别求导,最后结果再乘起来。

举个例子吧,求 y = ( x + 2 ) 3 y=(x+2)^3 y=(x+2)3的导函数。
你大可以把它拆开来变成 y = x 3 + 6 x 2 + 12 x + 8 y=x^3+6x^2+12x+8 y=x3+6x2+12x+8,然后求导得 y ′ = 3 x 2 + 12 x + 12 y'=3x^2+12x+12 y=3x2+12x+12
你同样也可以使用链式法则。你设 u = x + 2 u=x+2 u=x+2,则列出所有式子 y = u 3 , u = x + 2 y=u^3,u=x+2 y=u3,u=x+2。对每个式子分别求导得 y ′ = 3 u 2 , u ′ = 1 y'=3u^2,u'=1 y=3u2,u=1。乘起来得 y ′ = 3 u 2 × 1 y'=3u^2×1 y=3u2×1,把 u u u换成 x x x后得 y ′ = 3 ( x + 1 ) 2 = 3 x 2 + 12 x + 12 y'=3(x+1)^2=3x^2+12x+12 y=3(x+1)2=3x2+12x+12

另外,我们再给出常用的函数的导数表。具体证明就不一一证了。

C C C 0 0 0
x n x^n xn n x n − 1 nx^{n-1} nxn1
e x e^x ex e x e^x ex
a x a^x ax a x l n a a^xlna axlna
l n x lnx lnx 1 x \frac{1}{x} x1
l o g a x log^x_a logax 1 x l n a \frac{1}{xlna} xlna1
s i n x sinx sinx c o s x cosx cosx
c o s x cosx cosx − s i n x -sinx sinx
t a n x tanx tanx 1 c o s 2 x \frac{1}{cos^2x} cos2x1

现在,来求求 y = s i n ( 2 c o s x ) − e − x y=sin(2cosx)-e^{-x} y=sin(2cosx)ex的导数吧。
愚蠢的 H P HP HP:前一个部分,令 u = 2 c o s x u=2cosx u=2cosx,则 ( s i n u ) ′ ( u ′ ) = c o s u ( − 2 s i n x ) = − 2 c o s ( 2 c o s x ) s i n x (sinu)'(u')=cosu(-2sinx)=-2cos(2cosx)sinx (sinu)(u)=cosu(2sinx)=2cos(2cosx)sinx。后一个部分, e − x e^{-x} ex的导数为 − e − x -e^{-x} ex。则两部分加起来就是 − 2 c o s ( 2 c o s x ) s i n x + e − x -2cos(2cosx)sinx+e^{-x} 2cos(2cosx)sinx+ex

这个比较简单,那么再求求 y = x x y=x^x y=xx的导函数吧。
愚蠢的 H P : HP: HP:简单, y ′ = x × x x − 1 = x x . . . . . . y'=x×x^{x-1}=x^x...... y=x×xx1=xx......怎么感觉不太对厚?
聪明的 t x l txl txl:笨,上面的表格里 ( x n ) ′ = n x n − 1 (x^n)'=nx^{n-1} (xn)=nxn1规定了 n n n是个常数,你这个指数是 x x x又不是常数,怎么可以用这个公式?
愚蠢的 H P HP HP:那怎么办
聪明的 t x l txl txl:一般这种东西我们会选择先取各对数再用指数搞回去,也就是 y = e x l n x y=e^{xlnx} y=exlnx。然后利用链式法则和导数乘法法则求出答案。
愚蠢的 H P ( HP( HP(算了 13 m i n ) 13min) 13min):是不是 y ′ = x x ( 1 + l n x ) ? y'=x^x(1+lnx)? y=xx(1+lnx)
聪明的 t x l txl txl:很好。但现在我想知道椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0) a2x2+b2y2=1(a>b>0)在某点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的切线斜率,怎么搞呢?
愚蠢的 H P : HP: HP: e m m emm emm。或许,把 y y y写成 x x x的函数 ? ? ?貌似不行,因为一个 x x x会对应两个 y y y,它并不是一个函数。那就分类讨论吧!
聪明的 t x l txl txl:分类讨论可以,但是太麻烦了。这里,我们可以使用隐函数求导。所以隐函数求导的方法,就是在我们很难把 y y y写成 x x x函数形式的时候,直接对两边进行求导。但是注意,我们依然把 y y y看作是 x x x的函数,而非一个自变量。

由于椭圆方程是一个恒等式,所以对两边进行求导,其结果依然恒成立。
两边求导得 2 x a 2 + 2 y y ′ b 2 = 0 \frac{2x}{a^2}+\frac{2yy'}{b^2}=0 a22x+b22yy=0,得到 y ′ = − b 2 x a 2 y y'=-\frac{b^2x}{a^2y} y=a2yb2x。代入题中 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)即可得到斜率为 − b 2 x 0 a 2 y 0 -\frac{b^2x_0}{a^2y_0} a2y0b2x0

愚蠢的 H P HP HP:等等, y 2 b 2 \frac{y^2}{b^2} b2y2怎么就变成 2 y y ′ b 2 \frac{2yy'}{b^2} b22yy了?
聪明的 t x l txl txl:我不是说了吗, y y y要看作是一个函数,用复合函数求导公式。我们令 h ( y ) = y 2 h(y)=y^2 h(y)=y2,令 u = y u=y u=y,两边求导 h ′ ( y ) = ( u 2 ) ′ ( u ′ ) = 2 u × y ′ = 2 y y ′ h'(y)=(u^2)'(u')=2u×y'=2yy' h(y)=(u2)(u)=2u×y=2yy
愚蠢的 H P HP HP再次假装听懂。

好吧,接下来我们讨论导数这东西在三角函数里有什么用。

在一条水平数轴上,有一个点的位移大小 x x x随时间 t t t的函数为 x = e t x=e^t x=et,起点为 x = 1 , x=1, x=1,则时间 t t t后的速度大小是多少?
愚蠢的 H P HP HP:求导!速度大小就是 e t e^t et

在一条水平数轴上,有一个点的位移大小 x x x随时间 t t t的函数为 x = e n t x=e^{nt} x=ent,起点为 x = 1 x=1 x=1,则时间 t t t后的速度大小是多少?
愚蠢的 H P HP HP:这不是一样吗,还是求导!速度大小就是 n e n t ne^{nt} nent

在一条水平数轴上,从点 ( 1 , 0 ) (1,0) (1,0)开始,有一个点的位移大小 x x x随时间 t t t的函数为 x = e i t x=e^{it} x=eit。则时间 t t t后的速度大小是多少?
愚蠢的 H P : ? ? ? HP: ??? HP:???

欲知后事如何,请听下回因式分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值