小土堆pytorch学习笔记(十八、完整的模型训练套路.1)

一、搭建神经网络

网络模型的架构是根据CIFAR10网络模型搭建的。

import torch
from torch import nn


# 搭建神经网络
class Cow(nn.Module):
    def __init__(self):
        super(Cow, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


if __name__ == '__main__':
    cow = Cow()
    input = torch.ones((64, 3, 32, 32))
    output = cow(input)
    print(output.shape)

二、训练模型

import torchvision
from torch.utils.data import DataLoader
from model import *

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

# 查看训练集和验证集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
cow = Cow()

# 损失函数,使用交叉熵损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# 1e-3 = 1 x 10^(-3) = 0.001
learning_rate = 1e-3
optimizer = torch.optim.SGD(cow.parameters(), lr=learning_rate)


# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

for i in range(epoch):
    print("------第{}轮训练开始".format(i+1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = cow(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        print("训练次数:{}, Loss:{}".format(total_train_step, loss.item()))

其中loss.item跟直接使用loss相比,可以将输出转换为一个真实的数字,如下:

import torch
a = torch.tensor(5)
print(a)
print(a.item)

运行结果:

tensor(5)
5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值