联邦学习激励机制设计相关论文研究问题对比

An Incentive Mechanism for Cross-silo Federated Learning: A Public Goods Perspective

研究意义

  • 联邦学习中各个客户端的训练成本不等,且局部模型优劣评估指标欠缺,导致中心服务器无法有效量化各个客户端的具体贡献;
  • 由于客户端训练局部模型所需的计算资源和通信资源属于公共资源,不具有排他性,可能出现部分客户端坐享其成的现象。

研究思路

  • 激励机制设计:客户端上传期望训练次数以及期望资金转移量,中心服务器告诉客户端每一轮训练需要分配的计算性能以及资金转移量,所有客户端训练次数相同。
  • 各个客户端之间的互动可以视为博弈,证明了在博弈的纳什均衡下,各个客户端都能获得最优收益,同时中心服务器最小化自身成本;
  • 资金转移的意义是让模型收益更高的客户端补贴模型收益相对较低的客户端,防止部分客户端坐享其成的同时,也让客户端在模型收益较低的情况下也愿意参与联邦学习。

Optimal Contract Design for Efficient Federated Learning with Multi-Dimensional Private Information

研究意义

  • 服务器选择参与联邦学习的用户需要同时考虑其计算成本、通信时间,需要将用户的多维信息归纳为一个一维的选择标准;
  • 研究服务器对用户信息的不同了解程度对最优契约设计和服务器成本的影响;
  • 现实中不同用户使用数据服从的分布迥异,需要研究针对non-IID数据的最优契约设计。

研究思路

  • 契约设计:契约规定了每一个类型用户参与联邦学习能够获得的奖励。基于前面提出的选择标准,契约会给到服务器更偏好的用户类型更高的奖励,从而达到激励相对高效、低成本用户参与联邦学习的目的。

Incentive Mechanism Design for Distributed Coded Machine Learning

研究意义

  • 在分布式机器学习中存在straggling worker会拖累整体效率,所以需要引入编码机器学习,通过部分worker的计算结果恢复整体的计算结果;
  • 目前相关研究关注编码方案设计,缺少编码机器学习激励机制设计方面的研究。

研究思路

  • 将worker的多维信息(计算性能、计算成本)归纳为一维衡量标准,从而确定platform倾向于激励的worker类型;
  • 两阶段的Stackelberg博弈:在Stackelberg模型中,platform是领导者,worker是追随者;platform的决策变量是worker能够获得的奖励,worker的决策变量是参与编码机器学习与否以及汇报给platform的成本和性能;platform已知worker对其决策变量的反应函数,即只要能获得非负收益就会参与编码机器学习。

Cost-Effective Federated Learning Design

研究意义

  • 联邦学习的成本取决于客户端数目E和局部迭代次数K,本文专注于寻找E和K的最优解以达到最小化服务器成本的目的,同时保证机器学习模型收敛;基于不同的应用需求(减小时间成本or减小能源消耗)分别给出E和K取值的参考;与前面的文章有所不同,本文的重点不在激励机制设计。

研究思路

  • 定义服务器成本最小化问题以及模型收敛的约束条件,求解该问题一个近似问题的最优解,根据该近似解的特性给出E和K取值的参考。

总结

以上四篇文章的研究侧重点各不相同:第一篇文章旨在设计一个激励机制,中心服务器规定好客户端的最优模型训练方案,以及客户端之间相互补贴的规则,告诉客户端只要严格遵照规定就能获得最优收益;第二篇文章和第三篇文章有相同点,都希望将用户的多维信息归纳为一个一维指标,从而确定服务器倾向于激励的低成本、高效用户类型;不同之处在于,第二篇文章着重讨论不同信息场景以及non-IID数据对激励机制的影响,第三篇文章则是针对编码机器学习设计激励机制;第四篇文章的重点则放在求解最小化服务器成本的最优客户端数目E以及局部迭代次数K和保证模型收敛上,并根据近似解的特性,给出不同应用需求下K和E取值的参考。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值