机器学习-2 多元线性回归、多项式回归

本文介绍了多元线性回归的概念,包括假设、参数、代价函数和目标函数,并探讨了特征归一化的重要性。接着,文章转向多项式回归,说明其在处理多个特征时的优越性,并通过转换为线性问题简化模型。最后,讨论了Normal Equation方法,它是求解线性回归的另一种方式,与梯度下降进行对比,分析了各自的优缺点。
摘要由CSDN通过智能技术生成

多元线性回归:

         通过尺寸预测房价,只有尺寸一个特征,如果有多个特征比如楼层、房间数等,则

1. Hypothesis:假设(输入到输出的映射)

2. Parameters:参数/特征权重

3. cost function:代价函数

4. Goal:目标函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值