荒岛野人

Description

克里特岛以野人群居而著称。岛上有排列成环行的M个山洞。这些山洞顺时针编号为1,2,…,M。岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来。每个野人i有一个寿命值Li,即生存的年数。下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况。三个野人初始的洞穴编号依次为1,2,3;每年要走过的洞穴数依次为3,7,2;寿命值依次为4,3,1。
这里写图片描述

奇怪的是,虽然野人有很多,但没有任何两个野人在有生之年处在同一个山洞中,使得小岛一直保持和平与宁静,这让科学家们很是惊奇。他们想知道,至少有多少个山洞,才能维持岛上的和平呢?

Input

输入文件的第1行为一个整数N(1<=N<=15),即野人的数目。第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0<=Li<=10^6 ),表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。

Output

输出文件仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。

Sample Input

3 1 3 4 2 7 3 3 2 1

Sample Output
6
Data Constraint
Hint
该样例对应于题目描述中的例子。

分析:

  首先分析两个野人i,j的情况。如果i,j在x年相遇并且在第x年时俩人都活着,则可以得到一个同余方程:
  c[i]+xp[i]=c[j]+xp[j](ModM)
  
  现在我们要求不能使野人们相遇,则需要让这个同余方程无解,或解出的最小的x比两个人中任何一人的寿命长。

上述是两个野人之间的分析,但对于n个野人呢,由于n<=15,我们完全可以双重循环两两判断比较。M的初始值为max{c[i]}(易证,若山洞个数比初始位置还少,是不可行的),每次两两判断时,若有一对能相遇,则这个M不可行,需要M++,直到找到一个M,使每两个野人都不能相遇,则这个M为最终答案。
同余方程:
c[i]+xp[i]c[j]+xp[j](modM)
移项可得:
(p[i]p[j])xc[j]c[i](modM)
即求满足 (p[i]p[j])xMy=c[j]c[i]
的最小的正整数x
其中在每一步,pi-pj已知,M已知,cj-ci已知,方程即转化为ax+by=c,很眼熟吧?用扩展欧几里得就能求出一组可行的(x,y)的解,但是此时的x并不是最小的正整数解,还需借助通解式x=x0+kb来求出最小正整数解.

#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#define N 20
#define fo(i,a,b) for (int i=a;i<=b;i++)

using namespace std;

int c[N],p[N],l[N],n;
bool bz;

int Exgcd(int a,int b,int &x,int &y)
{
    if (!b) 
    {
        x=1;y=0;
        return a;
    }
    int d=Exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-(a/b)*y;
    return d;
}
bool pd(int x,int i,int j)
{
    bz=true;
    if (x<=min(l[i],l[j])) 
    {
        bz=false;
        return false;
    }
    return true;
}
int main()
{
    freopen("data.in","r",stdin);
    scanf("%d",&n);
    int k=0;
    fo(i,1,n)
    {
        scanf("%d%d%d",&c[i],&p[i],&l[i]);
        k=max(k,c[i]);
    }
    if (n==1)
    {
        printf("%d",1);
        return 0;
    }
    while (true)
    {
        bz=true;
        fo(i,1,n-1)
        {
            fo(j,i+1,n)
            {
                int x,y;
                int pcha=p[i]-p[j],ccha=c[j]-c[i];
                int d=Exgcd(pcha,k,x,y);
                if (ccha%d) continue;
                int xx=(x*ccha/d)%(k/d);
                if (xx<0) xx+=abs(k/d);
                if (!pd(xx,i,j)) break;
            }
            if (!bz) break;
        }
        if (bz) 
        {
            printf("%d",k);
            return 0;
        }
        k++;
    }
}
发布了132 篇原创文章 · 获赞 147 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览