Description
鸡腿是CZYZ的著名DS,但是不想学数学的DS不是好GFS,所以鸡腿想通过提高数学水平来增强他的GFS气质!虽然你对鸡腿很无语,但是故事的设定是你帮助鸡腿增强了GFS气质,所以现在你必须教鸡腿学数学!
鸡腿想到了一个很高(sha)明(bi)的问题,在 N 条水平线与 M 条竖直线构成的网格中,放 K 枚石子,每个石子都只能放在网格的交叉点上。问在最优的摆放方式下,最多能找到多少四边平行于坐标轴的长方形,它的四个角上都恰好放着一枚石子。
Input
一行输入三个正整数N,M,K。
Output
一行输出一个正整数,表示最多的满足条件的长方形数量。
Sample Input
输入1:3 3 8
输入2:7 14 86
Sample Output
输出1:5
输出2:1398
The Solution
简单的数学题,很显然,只有石子摆在一起的时候答案才会最优,于是便很容易推出计算式子
Cki2∗Ci2+Ckmodi2∗ki
//枚举第一行的石子个数,假设除最后一行外,其他都是i个
Little skill
C组合数可以写成一个函数来计算会比较方便
CODE
#include <cstdio>
#include <iostream>
#include <cmath>
#define fo(i,a,b) for (int i=a;i<=b;i++)
using namespace std;
int n,m,k;
long long calc(int x) {return (x-1)*x/2;}
long long work(int x,int y) { return calc(x)*calc(y)+(y<m?y:x)*calc(k-x*y);}
int main()
{
freopen("rectangle.in","r",stdin);
freopen("rectangle.out","w",stdout);
scanf("%d%d%d",&n,&m,&k);
if (n>m) swap(n,m);
int r=min(n,(int)sqrt(k));
long long ans=0;
fo(i,2,r)
{
int x=min(m,k/i);
if (k>=x*(i+1)) continue;
ans=max(ans,work(i,x));
}
printf("%lld\n",ans);
}