Divide and Sum

该文章介绍了DivideandSum问题的解决方法,通过对长度为2n的数列a进行非递减和非递增排序,分成两个长度为n的子序列p和q,然后计算所有可能组合的值之和。关键在于发现无论怎样选择p和q,结果总是前n大数与前n小数之差。代码示例使用C++实现,涉及排序、数组操作和模运算。
摘要由CSDN通过智能技术生成

题目:

Divide and Sum

题意:

长度为2n的数列a分为长度为n的数列p和q,按非递减的顺序对数列 p排序,而数列 q按非递增的顺序排序。定义f(p,q)=\sum_{i=1}^np_i-q_i,求所有f(p,q)的值的和

分析:

假设在a中前n小的数字p取了m个,则排序后这m个数在后m位,而a中前n大的数字q也取了m个,排序后这m个数也在后m位,因此不论如何取数,f(p,q)的值都为前n大的数-前n小的数。因此只需要求出所有p、q的组合再乘上f(q,p),便可,结果为f(p,q)C_{2n}^n

代码:

#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
long long sum[2000100];
long long sum3[2000100];
long long a[2001000];
inline long long qpow(long long x,long long b){
	long long ans=1;
	while(b){
		if(b&1)ans=ans*x%mod;
		x=x*x%mod;
		b>>=1;
	}
	return ans;
}
int main(){
	int n;
	scanf("%d",&n);
	for(int i=1;i<=2*n;i++){
		scanf("%lld",&a[i]);
	}
	sum[n]=1ll;
	for(long long i=n+1;i<=2*n;i++){
		sum[i]=sum[i-1]*i%mod;
	}
	//cout<<sum[n]<<endl;
	sum3[0]=1ll;
	for(long long i=1;i<=n;i++){
		sum3[i]=sum3[i-1]*i%mod;
	}
	
	sum[2*n]=sum[2*n]%mod*qpow(sum3[n],mod-2)%mod;
	sort(a+1,a+2*n+1);
	long long sum1=0,sum2=0;
	for(int i=1;i<=n;i++){
		sum1=(sum1+a[i])%mod;
	} 
	for(int i=n+1;i<=2*n;i++){
		sum2=(sum2+a[i])%mod;
	}
	long long ans=(sum2-sum1+mod)%mod;
	
	printf("%lld",(ans*sum[2*n]+mod)%mod);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值