DeepSeek 训练数据模板生成指南

DeepSeek 训练数据模板生成指南(一次生成多条高质量数据集)

一、核心数据格式规范

1. 基础结构(JSONL格式)

每条数据需包含 prompt(输入指令)和 completion(期望输出)两个核心字段,采用单行JSON格式存储:

{"prompt": "如何评估基金的投资风险?", "completion": "基金风险评估需关注:1. 历史波动率...2. 最大回撤..."}
{"prompt": "用Python实现快速排序", "completion": "def quick_sort(arr):\n    if len(arr) <= 1:\n        return arr\n    pivot = arr[len(arr)//2]..."}

2. 扩展字段(增强模型理解)

建议增加元数据字段提升训练效果:

{
  "domain": "finance",  // 领域标签(金融/医疗/教育等)
  "difficulty": 3,      // 难度等级(1-5级)
  "context": ["基金基础概念", "风险控制原则"],  // 关联知识点
  "language": "zh-CN",  // 语言版本
  "created_by": "expert_003"  // 数据来源标注
}

二、内容生成模板(10类场景)

1. 专业领域问答(占比30%)

# 金融领域模板
template = {
    "prompt": f"作为{random.choice(['证券分析师','理财顾问'])},如何{task}?",
    "completion": f"首先需要{step1},其次通过{step2}..."
}
# 医疗领域示例
{"prompt": "CT影像显示肺部磨玻璃结节,应如何判断良恶性?", 
 "completion": "需综合评估:1. 结节大小(>8mm高危) 2. 形态特征(分叶征、毛刺征) 3. 动态随访变化..."}

2. 多模态指令响应(占比15%)

{
  "prompt": "解析下图心电图并输出诊断建议:[图片ID:ECG_202502]",
  "completion": "该心电图显示:1. ST段弓背抬高(V2-V4导联) 2. Q波形成... 提示急性前壁心肌梗死"
}

3. 代码生成与调试(占比20%)

code_template = {
    "prompt": f"用{lang}实现{function},要求时间复杂度O({complexity})",
    "completion": f"def {function}(params):\n    # 算法步骤注释\n    {code_snippet}"
}
# 示例
{"prompt": "用PyTorch实现带注意力机制的LSTM文本分类", 
 "completion": "class AttnLSTM(nn.Module):\n    def __init__(self, vocab_size...)"}

4. 多轮对话上下文(占比15%)

[
  {"role": "user", "content": "我想了解量子计算对密码学的影响"},
  {"role": "assistant", "content": "量子计算主要威胁RSA等基于大数分解的加密算法..."},
  {"role": "user", "content": "那有哪些抗量子加密方案?"}
]

三、质量保障体系

1. 数据清洗流程

graph TD
    A[原始数据采集] --> B(去重处理)
    B --> C[敏感词过滤]
    C --> D{质量评分}
    D -->|评分>80| E[加入训练集]
    D -->|评分≤80| F[人工复审]

2. 自动化校验脚本

def validate_entry(entry):
    required_fields = ['prompt', 'completion']
    if not all(field in entry for field in required_fields):
        return False
    if len(entry['prompt']) < 10 or len(entry['completion'])<20:
        return False
    if contains_sensitive_words(entry):
        return False
    return True

四、领域分布建议

领域占比子类示例
金融经济25%投资分析/风险管理/财报解读
医疗健康20%诊断建议/药物交互/影像分析
信息技术30%编程/网络安全/算法优化
法律文书10%合同审查/案件分析/法规解读
生活服务15%旅游规划/餐饮推荐/教育咨询

五、生成工具与资源

1. 推荐工具链

  • 数据生成:使用Faker库生成基础模板数据
  • 领域扩展:调用Wikipedia API获取专业术语
  • 质量检测:DeepSeek-QAValidator(开源检测工具)
  • 格式转换:jq命令行工具处理JSONL文件

通过上述模板体系,可系统化生成5000条符合DeepSeek训练要求的高质量数据。建议采用分批次生成策略(如每次生成500条),每批数据通过自动化校验后人工抽样审核(抽样率≥5%),最终合并为完整数据集。

### DeepSeek 敏感词过滤方法 DeepSeek 在处理敏感词方面采用了多层次的技术手段来确保内容的安全性和合规性。具体来说,敏感词过滤主要依赖于以下几个关键技术环节: #### 1. 预定义敏感词库构建 为了有效识别并阻止不当内容的传播,DeepSeek 维护了一个动态更新的预定义敏感词库。该词库不仅涵盖了常见的违法不良信息关键词,还包括特定地区法律法规所规定的特殊词汇[^1]。 #### 2. 自然语言处理技术的应用 除了静态匹配外,DeepSeek 还利用先进的自然语言处理算法对文本语义进行深层次理解。这使得即使某些敏感信息经过变形或伪装也能被精准捕捉到。例如,对于同音字替换、字符间隔插入等情况下的隐晦表达同样具备较高的检出率[^2]。 #### 3. 多轮反馈机制优化 针对初次未能完全覆盖的新颖型敏感表述形式,DeepSeek 设计了一套基于用户交互反馈的学习框架。当发现新的潜在违规模式时,系统能够快速响应并将之纳入后续监测范围之内,从而实现自我进化的能力[^3]。 ```python def filter_sensitive_words(text, sensitive_word_list): """ 对输入文本中的敏感词进行过滤 参数: text (str): 待检测的原始字符串 sensitive_word_list (list): 已知敏感词语组成的列表 返回值: str: 去除敏感词后的干净文本 """ clean_text = text for word in sensitive_word_list: clean_text = clean_text.replace(word, '*' * len(word)) return clean_text ``` 此函数展示了如何简单地应用敏感词表来进行基本的内容净化操作。实际生产环境中使用的逻辑将会更加复杂和完善,包括但不限于上述提到的各种高级特性支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值