[数据可视化] 矩形树图(Treemap)

矩形树图是一种有效的数据可视化工具,尤其适用于展示层级关系并比较占比。在英国无煤发电的例子中,矩形树图清晰地揭示了燃油、核能和新能源在电力生成中的比例,其中燃油占比最大。制作矩形树图时,需要注意选择适合的数据量(通常大于5个分类)和避免在层次关系不明确的数据场景中使用。PowerBI中的矩形树图制作步骤包括选择字段、调整格式和设置标签,以呈现如广东省年利润分布的情况。
摘要由CSDN通过智能技术生成

矩形树图介绍

矩形树图(Treemap)也叫矩形式树状结构图,它采用多组面积不等的矩形嵌套而成

在一张图中,所有矩形的面积之和代表了总体数据。各个小矩形的面积表示每个子项的占比,矩形面积越大,表示子数据在整体中的占比越大

矩形树图适合展现具有层级关系的数据,能够直观体现同级之间的比较(矩形树图使用不同颜色和大小的长方形来显示数据的层次结构)

矩形树图的好处在于,相比起传统的树形结构图,矩形树图能更有效得利用空间,并且拥有展示占比的功能。矩形树图的缺点在于,当分类占比太小的时候文本会变得很难排布

矩形树图的构成

适合的数据条数: 大于5个分类数据

矩形树图应用案例

一项来自谢菲尔德大学的研究中,使用矩形树图呈现出了英国在76小时没有煤的情况下,电力生成占比情况,由图可以看出在没有燃煤发电的情况下,燃油、核能、风能发电、太阳能发电等共同构成了电力来源,其中,以燃油发电(Gas)占比最多,核能和新能源发电占比都在其之后 

注意

矩形树图不适合展示不带权重的层级关系数据场景

举个栗子:在展示公司的部门组成时,运用矩形树图会模糊层次关系

我们可以使用树状图来改进上述结果

案例:使用Power BI制作矩形树状图,反映各省的利润高低分布情况

数据源

具体操作如下所示

步骤1:单击"可视化"窗格中的"树状图"图标,选中相应字段拖至相应位置

提示Tips

树状图制作相对简单,主要有三个字段选项,各字段含义如下:

1.类别:从图表中根据实际分组字段大小按比例进行区块划分

2.详细信息:可在分组区块里进行再次分组

3.值:图形大小所依据的值(即要绘制的数据量)

步骤2:在格式栏中,将图例设为"关" ,数据颜色选项下可以修改每个分类的颜色,数据标签设为"开",数据标签下方的显示单位设为"无",类别标签设为"开"

步骤3:设置标题文本、字体(字体设为"Arial Blank")、背景色,对齐方式、文本大小

边框设为"开",鼠标调整树状图大小,最终呈现结果如下图所示

可以看出广东的年利润最高(其中深圳和广州的贡献最多),其次是湖北

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值