[数据可视化] 矩形树图(Treemap)

矩形树图是一种有效的数据可视化工具,尤其适用于展示层级关系并比较占比。在英国无煤发电的例子中,矩形树图清晰地揭示了燃油、核能和新能源在电力生成中的比例,其中燃油占比最大。制作矩形树图时,需要注意选择适合的数据量(通常大于5个分类)和避免在层次关系不明确的数据场景中使用。PowerBI中的矩形树图制作步骤包括选择字段、调整格式和设置标签,以呈现如广东省年利润分布的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩形树图介绍

矩形树图(Treemap)也叫矩形式树状结构图,它采用多组面积不等的矩形嵌套而成

在一张图中,所有矩形的面积之和代表了总体数据。各个小矩形的面积表示每个子项的占比,矩形面积越大,表示子数据在整体中的占比越大

矩形树图适合展现具有层级关系的数据,能够直观体现同级之间的比较(矩形树图使用不同颜色和大小的长方形来显示数据的层次结构)

矩形树图的好处在于,相比起传统的树形结构图,矩形树图能更有效得利用空间,并且拥有展示占比的功能。矩形树图的缺点在于,当分类占比太小的时候文本会变得很难排布

矩形树图的构成

适合的数据条数: 大于5个分类数据

矩形树图应用案例

一项来自谢菲尔德大学的研究中,使用矩形树图呈现出了英国在76小时没有煤的情况下,电力生成占比情况,由图可以看出在没有燃煤发电的情况下,燃油、核能、风能发电、太阳能发电等共同构成了电力来源,其中,以燃油发电(Gas)占比最多,核能和新能源发电占比都在其之后 

注意

矩形树图不适合展示不带权重的层级关系数据场景

举个栗子:在展示公司的部门组成时,运用矩形树图会模糊层次关系

我们可以使用树状图来改进上述结果

案例:使用Power BI制作矩形树状图,反映各省的利润高低分布情况

数据源

具体操作如下所示

步骤1:单击"可视化"窗格中的"树状图"图标,选中相应字段拖至相应位置

提示Tips

树状图制作相对简单,主要有三个字段选项,各字段含义如下:

1.类别:从图表中根据实际分组字段大小按比例进行区块划分

2.详细信息:可在分组区块里进行再次分组

3.值:图形大小所依据的值(即要绘制的数据量)

步骤2:在格式栏中,将图例设为"关" ,数据颜色选项下可以修改每个分类的颜色,数据标签设为"开",数据标签下方的显示单位设为"无",类别标签设为"开"

步骤3:设置标题文本、字体(字体设为"Arial Blank")、背景色,对齐方式、文本大小

边框设为"开",鼠标调整树状图大小,最终呈现结果如下图所示

可以看出广东的年利润最高(其中深圳和广州的贡献最多),其次是湖北

要掌握使用Python进行数据可视化,特别是绘制径向柱图和矩形树图,这两类图表在展示数据的周期性和层级结构方面具有独特优势。为了深入理解并实践这两种图表的绘制,以下是具体步骤和代码示例: 参考资源链接:[Python数据可视化:径向柱图与矩形树图案例分析](https://wenku.csdn.net/doc/4esfpzwhds?spm=1055.2569.3001.10343) 径向柱图绘制步骤: 1. 准备数据集:确定你要展示的数据集,这些数据将被用作绘制图表的基础。 2. 导入绘图库:这里以Matplotlib为例,它是Python中最常用的图表库之一。 3. 设置图表参数:定义图表的半径、角度等参数,这决定了图表的基本布局。 4. 绘制图表:使用库中的函数绘制径向柱图,并根据数据调整柱体的高度。 5. 完善图表:添加标题、坐标轴标签、图例等元素,确保图表信息完整。 6. (可选)增加交互:如果需要,可以通过Plotly等库添加交互式元素,如缩放、悬停提示等。 示例代码如下: ```python import matplotlib.pyplot as plt import numpy as np # 示例数据 angles = np.linspace(0, 2 * np.pi, 12, endpoint=False).tolist() data = [85, 185, 195, 215, 125, 115, 95, 65, 75, 155, 185, 195] data += data[:1] fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True)) ax.fill(angles, data, color='red', alpha=0.25) ax.plot(angles, data, color='red', linewidth=2) # 绘制径向柱图 plt.show() ``` 矩形树图绘制步骤: 1. 准备层次数据集:通常以树状结构或嵌套列表形式出现。 2. 数据转换:根据所用库的不同,可能需要将数据转换为适合的格式。 3. 定义图表参数:使用D3.js或其他可视化库定义矩形树图的参数。 4. 绘制矩形:根据数据计算每个矩形的大小和位置,并绘制。 5. 添加交互功能:可选步骤,如添加悬停提示、缩放功能等。 示例代码(使用JavaScript和D3.js): ```html <!DOCTYPE html> <html> <head> <title>矩形树图示例</title> <script src= 参考资源链接:[Python数据可视化:径向柱图与矩形树图案例分析](https://wenku.csdn.net/doc/4esfpzwhds?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值