时间序列分析|VAR向量自回归

1 基本概述

1.1 概念

向量自回归模型(vector autoregressive model,简称VAR模型)是非结构性方程组模型,用于估计多个变量之间的动态关系。向量自回归模型把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而实现了将单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。比如说存在一个系统,系统内有多个变量,VAR 模型分别将每一个变量作为因变量 Y,而系统内所有变量的滞后值作为自变量来建立方程。这样的话,系统内具有多少个变量就能够建立多少个方程式,这些式子就能描述多个变量之间的动态关系。

VAR模型常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响,主要应用于宏观经济学。是处理多个相关经济指标的分析与预测中最容易操作的模型之一。

由于向量自回归模型把每个内生变量作为系统中所有内生变量滞后值的函数来构造模型,从而避开了结构建模方法中需要对系统每个内生变量关于所有内生变量滞后值的建模问题。

1.2 内生变量与外生变量

1.21 内生变量

  • 内生变量是具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,是由模型系统决定的,同时也对模型系统产生影响。
  • 内生变量–般都是明确经济意义变量。
  • 一般情况下,内生变量与随机项相关
  • 在联立方程模型中,内生变量既作为被解释变量,又可以在不同的方程中作为解释变量。

1.22 外生变量

  • 外生变量一般是确定性变量,或者是具有临界概率分布的随机变量,其参数不是模型系统研究的元素。
  • 外生变量影响系统,但本身不受系统的影响。
  • 外生变量一般是经济变量、政策变量、虚拟变量。
  • 一般情况下,外生变量与随机项不相关。

注意:一个变量是内生变量还是外生变量,由经济理论和经济意义决定,不是从数学形式决定。

1.3 基本步骤

1.31 平稳性检验

VAR模型建立之前需要对各时间序列变量进行平稳性检验(ADF检验)。若各时间序列均是平稳序列,则可建立 VAR 模型;否则得到的向量自回归模型是伪回归。若

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值