【牛客网】小咪买东西(二分答案)

题目描述:

在这里插入图片描述在这里插入图片描述在这里插入图片描述

解题思路:

假设小咪只想买3件物品,并且最终买了物品 i , j , k i,j,k i,j,k使得所求的最大值为 m a x max max。则有关系式 v [ i ] + v [ j ] + v [ k ] c [ i ] + c [ j ] + c [ k ] = m a x \frac{v[i]+v[j]+v[k]}{c[i]+c[j]+c[k]}=max c[i]+c[j]+c[k]v[i]+v[j]+v[k]=max成立,也即 v [ i ] + v [ j ] + v [ k ] − m a x ∗ c [ i ] − m a x ∗ c [ j ] − m a x ∗ c [ k ] = 0 v[i]+v[j]+v[k]-max*c[i]-max*c[j]-max*c[k]=0 v[i]+v[j]+v[k]maxc[i]maxc[j]maxc[k]=0成立。假如我们随便猜一个数 x x x去替代" v [ i ] + v [ j ] + v [ k ] − m a x ∗ c [ i ] − m a x ∗ c [ j ] − m a x ∗ c [ k ] v[i]+v[j]+v[k]-max*c[i]-max*c[j]-max*c[k] v[i]+v[j]+v[k]maxc[i]maxc[j]maxc[k]"中的 m a x max max,如果x被我们猜大了则 v [ i ] + v [ j ] + v [ k ] − x ∗ c [ i ] − x ∗ c [ j ] − x ∗ c [ k ] < 0 v[i]+v[j]+v[k]-x*c[i]-x*c[j]-x*c[k]<0 v[i]+v[j]+v[k]xc[i]xc[j]xc[k]<0,若 x x x被猜小了则 v [ i ] + v [ j ] + v [ k ] − x ∗ c [ i ] − x ∗ c [ j ] − x ∗ c [ k ] > 0 v[i]+v[j]+v[k]-x*c[i]-x*c[j]-x*c[k]>0 v[i]+v[j]+v[k]xc[i]xc[j]xc[k]>0。由此,我想到可以将此题转化为二分搜索:在可能的答案区间里猜这个最大值,猜大了就往小了猜,猜小了就往大了猜。直到这个数接近 m a x max max即可。

AC代码:

#include<iostream>
#include<algorithm>
     using namespace std;
     const int maxn=1e4+100;
     int n,k;
     double c[maxn],v[maxn];
     bool check(double x){
     double y[maxn];
     for(int i=1;i<=n;i++){
      y[i]=v[i]-x*c[i];
     }
     sort(y+1,y+n+1);
     double s=0;
     for(int i=n;i>n-k;i--){  //选择前k个最大y[i]累加,如果最大的累加和都小于0则这个数一定猜大了
     s+=y[i];
     }
     return s>=0;    //s>=0则表示猜小了。也即返回true时表示猜小了
     }
     int Bsearch(double l,double r){
     int t=100;      //猜100次就足以让答案满足“精确至整数”的精度。
     while(t--){
     double m=(l+r)/2;
     if(check(m)) l=m;   //猜小了就往大了猜
     else r=m;           //猜大了就往小了猜
     }
     return (int)l;
     }
     int main(){
     int t;
     cin>>t;
     while(t--){
     cin>>n>>k;
     for(int i=1;i<=n;i++){
      cin>>c[i]>>v[i];
     }
     double l=0;
     double r=1e4;      //大致估计答案在0-10000之间
     cout<<Bsearch(l,r)<<endl;
     }
    return 0;
     }


上一篇博客:【leetcode】778. 水位上升的泳池中游泳(dfs+二分答案)

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:4,181张图片 - 验证集:1,212张图片 - 测试集:610张图片 总计:6,003张航拍及自然场景图片 分类类别: 涵盖23类野生动物,包括: - 濒危物种(北极熊、犀牛、熊猫) - 大型哺乳动物(大象、河马、长颈鹿) - 猛禽类(鹰、鹦鹉、企鹅) - 食肉动物(狮子、猎豹、美洲豹) - 草食动物(斑马、鹿、山羊) 标注格式: YOLO格式标注,包含边界框坐标与类别标签,适配主流目标检测框架。 数据特性: 航拍视角与地面视角相结合,包含动物群体活动和个体行为场景。 二、适用场景 生态保护监测系统: 构建野生动物种群识别系统,支持自然保护区自动监测动物迁徙和栖息地活动。 智能林业管理: 集成至森林巡护无人机系统,实时检测濒危物种并预警盗猎行为。 动物行为研究: 为科研机构提供标注数据支撑,辅助研究动物种群分布与行为特征。 自然纪录片制作: AI预处理工具开发,快速定位视频素材中的特定物种片段。 教育科普应用: 用于野生动物识别教育软件,支持互动式物种学习功能开发。 三、数据集优势 物种覆盖全面: 包含非洲草原系、极地系、森林系等23类特色动物,特别涵盖10种IUCN红色名录物种。 多场景适配: 整合航拍与地面视角数据,支持开发不同观测高度的检测模型。 标注质量可靠: 经动物学专家校验,确保复杂场景(群体/遮挡)下的标注准确性。 模型兼容性强: 原生YOLO格式可直接应用于YOLOv5/v7/v8等系列模型训练。 生态研究价值: 特别包含熊科动物(棕熊/北极熊/熊猫)细分类别,支持濒危物种保护研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值