关于极限
二项式定理
( a + b ) n = C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + ⋯ + C n n − 1 a b n − 1 + C n n b n = ∑ i = 0 n C n i a n − i b i (a + b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \cdots + C_n^{n-1}ab^{n-1} + C_n^nb^n = \sum_{i=0}^{n}C_n^i a^{n-i}b^i (a+b)n=Cn0an+Cn1an−1b+Cn2an−2b2+⋯+Cnn−1abn−1+Cnnbn=i=0∑nCnian−ibi
极限运算法则(们)
lim n → ∞ ( x n + y n ) = lim n → ∞ x n + lim n → ∞ y n lim n → ∞ ( x n y n ) = lim n → ∞ x n ⋅ lim n → ∞ y n lim n → ∞ ( x n y n ) = lim n → ∞ x n lim n → ∞ y n lim n → ∞ x n y n = ( lim n → ∞ x n ) lim n → ∞ y n \begin{aligned} & \lim_{n\to \infty}(x_n+y_n) = \lim_{n\to \infty}x_n + \lim_{n\to \infty} y_n \\ \\ & \lim_{n\to \infty}(x_ny_n) = \lim_{n\to \infty}x_n \cdot \lim_{n\to \infty}y_n\\ \\ & \lim_{n\to \infty}\left( \frac{x_n}{y_n} \right) = \frac{\lim_{n\to \infty}x_n}{\lim_{n\to \infty}y_n} \\ \\ &\lim_{n\to \infty}x_n^{y_n} = \left(\lim_{n\to \infty}x_n\right)^{\lim_{n\to \infty}y_n} \end{aligned} n→∞lim(xn+yn)=n→∞limxn+n→∞limynn→∞lim(xnyn)=n→∞limxn⋅n→∞limynn→∞lim(ynxn)=limn→∞ynlimn→∞xnn→∞limxnyn=(n→∞limxn)limn→∞yn
Stolz 定理
两个数列
{
x
n
}
\lbrace x_n \rbrace
{xn} 和
{
y
n
}
\lbrace y_n \rbrace
{yn},其中
y
n
y_n
yn 是无穷大量。如果:
lim
n
→
∞
x
n
−
x
n
−
1
y
n
−
y
n
−
1
=
a
\lim_{n\to \infty}\frac{x_n - x_{n-1}}{y_n-y_{n-1}} = a
n→∞limyn−yn−1xn−xn−1=a
则:
lim
n
→
∞
x
n
y
n
=
a
\lim_{n\to \infty} \frac{x_n}{y_n} = a
n→∞limynxn=a
夹逼定理
三个数列
{
x
n
}
\lbrace x_n \rbrace
{xn} ,
{
y
n
}
\lbrace y_n \rbrace
{yn} 和
{
z
n
}
\lbrace z_n \rbrace
{zn}。若:
x
n
≤
y
n
≤
z
n
且
lim
n
→
∞
x
n
=
lim
n
→
∞
z
n
=
a
x_n \leq y_n \leq z_n \qquad 且 \qquad \lim_{n\to \infty}x_n = \lim_{n\to \infty}z_n = a
xn≤yn≤zn且n→∞limxn=n→∞limzn=a
则:
lim
n
→
∞
y
n
=
a
\lim_{n\to \infty}y_n = a
n→∞limyn=a
题(们)
(1)
lim
n
→
∞
(
1
+
1
2
+
1
3
+
⋯
+
1
n
)
1
n
≤
lim
n
→
∞
n
1
n
=
1
\lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} \leq \lim_{n\to \infty}n^{\frac{1}{n}} = 1
n→∞lim(1+21+31+⋯+n1)n1≤n→∞limnn1=1
lim
n
→
∞
(
1
+
1
2
+
1
3
+
⋯
+
1
n
)
1
n
≥
lim
n
→
∞
1
1
n
=
1
\lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} \geq \lim_{n\to \infty}1^{\frac{1}{n}} = 1
n→∞lim(1+21+31+⋯+n1)n1≥n→∞lim1n1=1
∴
lim
n
→
∞
(
1
+
1
2
+
1
3
+
⋯
+
1
n
)
1
n
=
1
\therefore \lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} = 1
∴n→∞lim(1+21+31+⋯+n1)n1=1
(2)
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
⋯
+
1
n
+
n
)
≤
lim
n
→
∞
n
n
+
n
=
lim
n
→
∞
1
1
+
1
n
=
1
\lim_{n\to \infty}(\frac{1}{n + \sqrt{1}} + \frac{1}{n + \sqrt{2}} + \cdots +\frac{1}{n + \sqrt{n}}) \leq \lim_{n\to \infty} \frac{n}{n + \sqrt{n}} = \lim_{n\to \infty}\frac{1}{1+\frac{1}{\sqrt{n}}} = 1
n→∞lim(n+11+n+21+⋯+n+n1)≤n→∞limn+nn=n→∞lim1+n11=1
lim
n
→
∞
(
n
n
+
1
+
n
n
+
2
+
⋯
+
n
n
+
n
)
≥
lim
n
→
∞
n
n
+
1
=
1
1
+
1
n
=
1
\lim_{n\to \infty}({\frac{n}{n +\sqrt{1}} + \frac{n}{n +\sqrt{2}} +\cdots+ \frac{n}{n +\sqrt{n}}}) \geq \lim_{n\to \infty}\frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} = 1
n→∞lim(n+1n+n+2n+⋯+n+nn)≥n→∞limn+1n=1+n11=1
∴
lim
n
→
∞
(
1
n
+
1
+
1
n
+
2
+
⋯
+
1
n
+
n
)
=
1
\therefore \lim_{n\to \infty}(\frac{1}{n+\sqrt{1}} + \frac{1}{n +\sqrt{2}} + \cdots + \frac{1}{n +\sqrt{n}}) = 1
∴n→∞lim(n+11+n+21+⋯+n+n1)=1
(3)
lim
n
→
∞
∑
k
=
n
2
(
n
+
1
)
2
1
k
≤
lim
n
→
∞
(
n
+
1
)
2
−
n
2
+
1
n
+
1
=
lim
n
→
∞
2
=
2
\lim_{n\to \infty}\sum_{k = n^2}^{(n+1)^2}\frac{1}{\sqrt{k}} \leq \lim_{n\to \infty}\frac{(n+1)^2-n^2+1}{n+1} = \lim_{n\to \infty}2 = 2
n→∞limk=n2∑(n+1)2k1≤n→∞limn+1(n+1)2−n2+1=n→∞lim2=2
lim
n
→
∞
∑
k
=
n
2
(
n
+
1
)
2
1
k
≥
(
n
+
1
)
2
−
n
2
+
1
n
=
2
lim
n
→
∞
n
n
+
1
=
2
lim
n
→
∞
1
1
+
1
n
=
2
\lim_{n\to \infty}\sum_{k = n^2}^{(n+1)^2}\frac{1}{\sqrt{k}} \geq \frac{(n+1)^2-n^2+1}{n} = 2\lim_{n\to \infty}\frac{n}{n+1} = 2\lim_{n\to \infty}\frac{1}{1+\frac{1}{n}} = 2
n→∞limk=n2∑(n+1)2k1≥n(n+1)2−n2+1=2n→∞limn+1n=2n→∞lim1+n11=2
(4)
lim
n
→
∞
1
⋅
3
⋅
5
⋯
(
2
n
−
1
)
2
⋅
4
⋅
6
⋯
(
2
n
)
≥
lim
n
→
∞
(
1
2
)
n
=
0
\lim_{n\to \infty}\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \geq \lim_{n\to \infty}(\frac{1}{2})^n = 0
n→∞lim2⋅4⋅6⋯(2n)1⋅3⋅5⋯(2n−1)≥n→∞lim(21)n=0
令
G
=
∏
i
=
1
n
2
i
−
1
2
i
,
P
=
∏
i
=
1
n
2
i
2
i
+
1
令 G = \prod_{i=1}^{n}\frac{2i-1}{2i},P = \prod_{i=1}^{n}\frac{2i}{2i+1}
令G=i=1∏n2i2i−1,P=i=1∏n2i+12i
G
<
P
且
G
P
=
1
2
n
+
1
∴
G
<
1
2
n
+
1
→
lim
n
→
∞
G
≤
lim
n
→
∞
1
2
n
+
1
=
0
G < P 且 GP = \frac{1}{2n+1} \therefore G < \frac{1}{\sqrt{2n+1}} \rightarrow \lim_{n\to \infty}G \leq \lim_{n\to \infty}\frac{1}{\sqrt{2n+1}} = 0
G<P且GP=2n+11∴G<2n+11→n→∞limG≤n→∞lim2n+11=0
lim
n
→
∞
1
⋅
3
⋅
5
⋯
(
2
n
−
1
)
2
⋅
4
⋅
6
⋯
(
2
n
)
=
0
\lim_{n\to \infty}\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} = 0
n→∞lim2⋅4⋅6⋯(2n)1⋅3⋅5⋯(2n−1)=0
(1)
lim
n
→
∞
3
n
2
+
4
n
−
1
n
2
+
1
=
3
+
lim
n
→
∞
n
−
1
n
2
+
1
=
3
+
lim
n
→
∞
1
−
1
n
n
+
1
n
=
3
\lim_{n\to \infty}\frac{3n^2+4n-1}{n^2+1} = 3 + \lim_{n\to \infty}\frac{n-1}{n^2+1} = 3 + \lim_{n\to \infty}\frac{1-\frac{1}{n}}{n+\frac{1}{n}} = 3
n→∞limn2+13n2+4n−1=3+n→∞limn2+1n−1=3+n→∞limn+n11−n1=3
(2)
lim
n
→
∞
n
3
+
2
n
2
−
3
n
+
1
2
n
3
−
n
+
3
=
lim
n
→
∞
1
+
2
n
+
3
n
2
+
1
n
3
2
−
1
n
+
1
n
3
=
1
2
\lim_{n\to \infty}\frac{n^3+2n^2-3n+1}{2n^3-n+3} = \lim_{n\to \infty}\frac{1 + \frac{2}{n} + \frac{3}{n^2} + \frac{1}{n^3}}{2 - \frac{1}{n} + \frac{1}{n^3}} = \frac{1}{2}
n→∞lim2n3−n+3n3+2n2−3n+1=n→∞lim2−n1+n311+n2+n23+n31=21
(3)
lim
n
→
∞
3
n
+
n
3
3
n
+
1
+
(
n
+
1
)
3
=
lim
n
→
∞
1
+
n
3
3
n
3
+
(
n
+
1
)
3
3
n
=
1
3
(
lim
n
→
∞
n
k
a
n
=
0
证
明
见
8
)
\lim_{n\to \infty}\frac{3^n + n^3}{3^{n+1}+(n+1)^3} = \lim_{n\to \infty}\frac{1+\frac{n^3}{3^n}}{3 + \frac{(n+1)^3}{3^n}} = \frac{1}{3} (\lim_{n\to \infty}\frac{n^k}{a^n} = 0 证明见 8)
n→∞lim3n+1+(n+1)33n+n3=n→∞lim3+3n(n+1)31+3nn3=31(n→∞limannk=0证明见8)
(4)
lim
n
→
∞
(
n
2
+
1
n
−
1
)
sin
n
π
2
=
[
(
lim
n
→
∞
n
2
+
1
n
)
−
1
]
lim
n
→
∞
sin
n
π
2
=
0
\lim_{n\to \infty}(\sqrt[n]{n^2+1}-1)\sin\frac{n\pi}{2} = \Bigg[\Big(\lim_{n\to \infty}\sqrt[n]{n^2+1}\Big)-1\Bigg]\lim_{n\to \infty}\sin\frac{n\pi}{2} = 0
n→∞lim(nn2+1−1)sin2nπ=[(n→∞limnn2+1)−1]n→∞limsin2nπ=0
(5)
lim
n
→
∞
n
(
n
+
1
−
n
)
=
lim
n
→
∞
(
n
2
+
n
−
n
)
(
n
2
+
n
+
n
)
n
2
+
n
+
n
=
lim
n
→
∞
n
n
2
+
n
+
n
=
lim
n
→
∞
1
1
+
1
+
1
n
=
1
2
\begin{aligned} &\lim_{n\to \infty}\sqrt{n}(\sqrt{n+1} - \sqrt{n}) = \lim_{n\to \infty}\frac{(\sqrt{n^2+n}-n)(\sqrt{n^2+n} + n)}{\sqrt{n^2+n}+n}\\ = &\lim_{n\to \infty}\frac{n}{\sqrt{n^2+n}+n} = \lim_{n\to \infty}\frac{1}{1 + \sqrt{1+\frac{1}{n}}} = \frac{1}{2} \end{aligned}
=n→∞limn(n+1−n)=n→∞limn2+n+n(n2+n−n)(n2+n+n)n→∞limn2+n+nn=n→∞lim1+1+n11=21
(6)
lim
n
→
∞
(
1
−
1
2
2
)
(
1
−
1
3
2
)
⋯
(
1
−
1
n
2
)
=
lim
n
→
∞
2
2
−
1
2
2
⋅
3
2
−
1
3
2
⋅
4
2
−
1
4
2
⋯
n
2
−
1
n
2
=
lim
n
→
∞
(
2
+
1
)
(
2
−
1
)
(
3
+
1
)
(
3
−
1
)
(
4
+
1
)
(
4
−
1
)
⋯
(
n
+
1
)
(
n
−
1
)
2
2
⋅
3
2
⋅
4
2
⋯
n
2
=
lim
n
→
∞
n
+
1
2
n
=
lim
n
→
∞
1
+
1
n
2
=
1
2
\begin{aligned} &\lim_{n\to \infty} (1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots (1-\frac{1}{n^2})\\ = & \lim_{n\to \infty}\frac{2^2-1}{2^2} \cdot \frac{3^2-1}{3^2} \cdot \frac{4^2-1}{4^2} \cdots \frac{n^2-1}{n^2}\\ = &\lim_{n\to \infty}\frac{(2+1)(2-1)(3+1)(3-1)(4+1)(4-1) \cdots (n+1)(n-1)}{2^2\cdot3^2\cdot4^2\cdots n^2} \\ = &\lim_{n\to \infty}\frac{n+1}{2n} = \lim_{n\to \infty}\frac{1+\frac{1}{n}}{2} = \frac{1}{2} \end{aligned}
===n→∞lim(1−221)(1−321)⋯(1−n21)n→∞lim2222−1⋅3232−1⋅4242−1⋯n2n2−1n→∞lim22⋅32⋅42⋯n2(2+1)(2−1)(3+1)(3−1)(4+1)(4−1)⋯(n+1)(n−1)n→∞lim2nn+1=n→∞lim21+n1=21
(7)
lim
n
→
∞
n
(
n
2
+
1
4
−
n
+
1
)
=
lim
n
→
∞
n
n
2
+
1
4
+
n
2
+
2
n
+
1
4
=
lim
n
→
∞
n
n
2
+
1
−
n
2
+
2
n
+
1
n
2
+
1
4
+
n
2
+
2
n
+
1
4
=
lim
n
→
∞
n
−
2
n
(
n
2
+
1
4
+
n
2
+
2
n
+
1
4
)
(
n
2
+
1
+
n
2
+
2
n
+
1
)
=
lim
n
→
∞
−
2
n
3
2
(
n
2
+
1
4
+
n
2
+
2
n
+
1
4
)
(
n
2
+
1
+
n
2
+
2
n
+
1
)
=
lim
n
→
∞
−
2
n
3
2
4
n
3
2
=
−
1
2
\begin{aligned} & \lim_{n\to \infty}\sqrt{n}(\sqrt[4]{n^2+1}- \sqrt{n+1})\\ = & \lim_{n\to \infty}\sqrt{n}{\sqrt[4]{n^2+1} + \sqrt[4]{n^2+2n+1}}\\ = & \lim_{n\to \infty}\sqrt{n}\frac{\sqrt{n^2+1} - \sqrt{n^2+2n+1}}{\sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1}}\\ = & \lim_{n\to \infty}\sqrt{n}\frac{-2n}{\left( \sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1} \right) \left( \sqrt{n^2+1}+\sqrt{n^2+2n+1} \right) }\\ = & \lim_{n\to \infty} \frac{-2n^{\frac{3}{2}}}{\left( \sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1} \right) \left( \sqrt{n^2+1}+\sqrt{n^2+2n+1} \right) }\\ = & \lim_{n\to \infty}\frac{-2n^{\frac{3}{2}}}{4n^{\frac32}} = -\frac 12 \end{aligned}
=====n→∞limn(4n2+1−n+1)n→∞limn4n2+1+4n2+2n+1n→∞limn4n2+1+4n2+2n+1n2+1−n2+2n+1n→∞limn(4n2+1+4n2+2n+1)(n2+1+n2+2n+1)−2nn→∞lim(4n2+1+4n2+2n+1)(n2+1+n2+2n+1)−2n23n→∞lim4n23−2n23=−21
(8)
lim
n
→
∞
(
1
2
+
3
2
2
+
⋯
+
2
n
−
1
2
n
)
\lim_{n\to \infty}(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n-1}{2^n})
n→∞lim(21+223+⋯+2n2n−1)
- 证明:若
lim
n
→
∞
a
n
=
a
\lim_{n\to \infty} a_n = a
limn→∞an=a 则
lim
n
→
∞
a
1
+
a
2
+
a
3
+
⋯
+
a
n
n
=
a
\lim_{n\to \infty}\frac{a_1+a_2+a_3+\cdots + a_n}{n} = a
limn→∞na1+a2+a3+⋯+an=a
令 x n = a 1 + ⋯ + a n , y n = n x_n = a_1+\cdots+a_n,y_n = n xn=a1+⋯+an,yn=n
lim n → ∞ 1 1 + ⋯ + a n n = lim n → ∞ x n + 1 − x n y n + 1 − y n = lim n → ∞ a n + 1 1 = a \begin{aligned} \lim_{n\to \infty}\frac{1_1+\cdots+a_n}{n} = \lim_{n\to \infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n} = \lim_{n\to \infty}\frac{a_{n+1}}{1} = a \end{aligned} n→∞limn11+⋯+an=n→∞limyn+1−ynxn+1−xn=n→∞lim1an+1=a
证毕
- 设
a
n
>
0
a_n > 0
an>0, 且
lim
n
→
∞
a
n
=
a
\lim_{n\to \infty}a_n = a
limn→∞an=a,证明:
lim
n
→
∞
a
1
a
2
⋯
a
n
n
=
a
\lim_{n\to \infty}\sqrt[n]{a_1a_2\cdots a_n} = a
limn→∞na1a2⋯an=a
lim n → ∞ a 1 ⋯ a n n ≤ lim n → ∞ a 1 + ⋯ + a n n = a \lim_{n\to \infty}\sqrt[n]{a_1\cdots a_n} \leq \lim_{n\to \infty}\frac{a_1 + \cdots + a_n}{n} = a n→∞limna1⋯an≤n→∞limna1+⋯+an=a
lim n → ∞ a a ⋯ a n n ≥ lim n → ∞ a n = a \lim_{n\to \infty}\sqrt[n]{a_a\cdots a_n} \geq \lim_{n\to \infty}a_n = a n→∞limnaa⋯an≥n→∞liman=a
∴ lim n → ∞ a 1 a 2 ⋯ a n n = a \therefore \lim_{n\to \infty}\sqrt[n]{a_1a_2\cdots a_n} = a ∴n→∞limna1a2⋯an=a
证毕
- 若 a n > 0 a_n > 0 an>0 (n = 1, 2, 3…),且 lim n → ∞ a n + 1 a n = a \lim_{n\to \infty}\frac{a_{n+1}}{a_n} = a limn→∞anan+1=a,求证 lim n → ∞ a n n = a \lim_{n\to \infty}\sqrt[n]{a_n} = a limn→∞nan=a
- 求 lim n → ∞ 1 2 + 3 3 + 5 2 + ⋯ + ( 2 n + 1 ) 2 n 3 \lim_{n\to \infty}\frac{1^2 + 3^3 + 5^2 + \cdots + (2n+1)^2}{n^3} limn→∞n312+33+52+⋯+(2n+1)2
- 用 Stolz 定理求
lim
n
→
∞
log
a
n
n
\lim_{n\to \infty}\frac{\log_an}{n}
limn→∞nlogan 和
lim
n
→
∞
n
k
a
n
\lim_{n\to \infty}\frac{n^k}{a^n}
limn→∞annk
lim n → ∞ log a n n = lim n → ∞ log a ( n + 1 ) − log a n n + 1 − n = lim n → ∞ log a ( n + 1 n ) = lim n → ∞ log a ( 1 + 1 n ) = 0 \begin{aligned} \lim_{n\to \infty}\frac{\log_an}{n} = &\lim_{n\to \infty}\frac{\log_a(n+1)-\log_an}{n+1-n} \\ = & \lim_{n\to \infty}\log_a(\frac{n+1}{n})\\ = & \lim_{n\to \infty}\log_a(1+\frac{1}{n}) = 0 \end{aligned} n→∞limnlogan===n→∞limn+1−nloga(n+1)−logann→∞limloga(nn+1)n→∞limloga(1+n1)=0
lim n → ∞ n k a n = lim n → ∞ n k − ( n − 1 ) k a n − a n − 1 = lim n → ∞ C k 1 n k − 1 − C k 2 n k − 2 + C k 3 n k − 3 − ⋯ + 1 a n − a n − 1 \begin{aligned} &\lim_{n\to \infty}\frac{n^k}{a^n} = \lim_{n\to \infty}\frac{n^k-(n-1)^k}{a^{n}-a^{n-1}}\\ = & \lim_{n\to \infty}\frac{C_k^1n^{k-1}-C_k^2n^{k-2}+C_k^3n^{k-3}-\cdots+1}{a^n-a^{n-1}} \end{aligned} =n→∞limannk=n→∞liman−an−1nk−(n−1)kn→∞liman−an−1Ck1nk−1−Ck2nk−2+Ck3nk−3−⋯+1
- 设 { x n } \lbrace x_n \rbrace {xn} 是无穷大量, ∣ y n ∣ ≥ δ > 0 |y_n| \geq \delta > 0 ∣yn∣≥δ>0,证明 { x n y n } \lbrace x_ny_n \rbrace {xnyn} 是无穷大量。
导数
常见的导数(们)
( C ) ′ = 0 ( sin x ) ′ = c o s x ( cos x ) ′ = − s i n x ( ln x ) ′ = 1 x ( log a x ) ′ = 1 x l n a ( e x ) ′ = e x ( a x ) ′ = a x l n a ( x n ) ′ = n x n − 1 \begin{aligned} &(C)' = 0\\ &(\sin x)' = cosx\\ &(\cos x)' = -sinx\\ &(\ln x)' = \frac 1x\\ &(\log_ax)' = \frac{1}{xlna}\\ &(e^x)' = e^x\\ &(a^x)' = a^xlna\\ &(x^n)' = nx^{n-1} \end{aligned} (C)′=0(sinx)′=cosx(cosx)′=−sinx(lnx)′=x1(logax)′=xlna1(ex)′=ex(ax)′=axlna(xn)′=nxn−1
求导法则(们)
d
(
f
(
x
)
+
g
(
x
)
)
d
x
=
d
f
(
x
)
d
x
+
d
g
(
x
)
d
x
d
(
f
(
x
)
g
(
x
)
)
d
x
=
d
f
(
x
)
d
x
g
(
x
)
+
d
g
(
x
)
d
x
f
(
x
)
d
(
f
(
x
)
g
(
x
)
)
d
x
=
d
f
(
x
)
d
x
g
(
x
)
−
d
g
(
x
)
d
x
f
(
x
)
g
2
(
x
)
d
f
(
g
(
x
)
)
d
x
=
d
f
(
g
(
x
)
)
d
g
(
x
)
⋅
d
g
(
x
)
d
x
\begin{aligned} &\frac{d(f(x)+g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}\\ \\ &\frac{d\left(f(x)g(x)\right)}{dx} = \frac{df(x)}{dx}g(x) + \frac{dg(x)}{dx}f(x)\\ \\ &\frac{d\left(\frac{f(x)}{g(x)}\right)}{dx} = \frac{\frac{df(x)}{dx}g(x) - \frac{dg(x)}{dx}f(x)}{g^2(x)} \\ \\ &\frac{df(g(x))}{dx} = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx} \end{aligned}
dxd(f(x)+g(x))=dxdf(x)+dxdg(x)dxd(f(x)g(x))=dxdf(x)g(x)+dxdg(x)f(x)dxd(g(x)f(x))=g2(x)dxdf(x)g(x)−dxdg(x)f(x)dxdf(g(x))=dg(x)df(g(x))⋅dxdg(x)
需要注意的是,复合函数求导法则不适用于指数形式,比如:
x
x
x^x
xx 的导数应该这样求:
(
x
x
)
′
=
(
e
ln
(
x
x
)
)
′
=
(
e
x
ln
x
)
′
=
e
x
ln
x
⋅
(
ln
x
+
1
)
\begin{aligned} (x^x)' = \left(e^{\ln(x^x)}\right)' = \left( e^{x\ln x} \right)' = e^{x\ln x} \cdot (\ln x + 1) \end{aligned}
(xx)′=(eln(xx))′=(exlnx)′=exlnx⋅(lnx+1)
题(们)
当 a 为何值时,直线
y
=
x
y = x
y=x 能与
y
=
log
a
x
y = \log_ax
y=logax 相切,切点在哪里。
因为相切所以切点切线斜率为 1,即:
(
log
a
x
)
′
=
1
x
ln
a
=
1
\left( \log_ax \right)' = \frac{1}{x\ln a} = 1
(logax)′=xlna1=1
又因为切点在
y
=
x
y = x
y=x 上,所以横纵坐标相等,即:
x
=
log
a
x
x = \log_ax
x=logax
联立得:
{
1
x
0
ln
a
=
1
x
0
=
log
a
x
0
∵
1
x
0
ln
a
=
1
∴
x
0
=
1
ln
a
∵
x
0
=
log
a
x
0
∴
x
0
=
ln
x
0
ln
a
∴
ln
x
0
=
1
→
x
0
=
e
→
ln
a
=
1
e
→
a
=
e
1
e
\begin{aligned} &\begin{cases} \frac{1}{x_0\ln a} = 1 \\ x_0 = \log_a x_0 \end{cases}\\ & \because \frac{1}{x_0\ln a} = 1 \quad \therefore x_0 = \frac{1}{\ln a}\\ & \because x_0 = \log_ax_0 \quad \therefore x_0 = \frac{\ln x_0}{\ln a}\\ &\therefore \ln x_0 = 1 \rightarrow x_0 = e \rightarrow \ln a = \frac{1}{e} \rightarrow a = e^{\frac{1}{e}} \end{aligned}
{x0lna1=1x0=logax0∵x0lna1=1∴x0=lna1∵x0=logax0∴x0=lnalnx0∴lnx0=1→x0=e→lna=e1→a=ee1
所以当
a
=
e
1
e
a = e^{\frac{1}{e}}
a=ee1 时,
y
=
log
a
x
y = \log_ax
y=logax 与
y
=
x
y=x
y=x 相切,切点为
(
e
,
e
)
(e, e)
(e,e)。
求 arcsin x \arcsin x arcsinx 的导数:
我们知道如果
y
=
arcsin
x
y = \arcsin x
y=arcsinx 则
x
=
sin
y
x = \sin y
x=siny。等式两边同时求导,得到:
y
′
cos
y
=
1
→
y
′
=
1
cos
y
=
1
1
−
sin
2
y
y' \cos y = 1 \rightarrow y' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}}
y′cosy=1→y′=cosy1=1−sin2y1
又因为 y = arcsin x y = \arcsin x y=arcsinx,所以:
y ′ = 1 1 − sin 2 ( arcsin x ) = 1 1 − x 2 y' = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}} y′=1−sin2(arcsinx)1=1−x21
求 arccos x \arccos x arccosx的导数:
因为
y
=
arccos
x
y = \arccos x
y=arccosx,我们就有
x
=
cos
y
x = \cos y
x=cosy。两边同时求导得到:
1
=
−
y
′
sin
y
→
y
′
=
−
1
sin
y
=
−
1
1
−
cos
2
y
1 = -y' \sin y \rightarrow y' = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1-\cos^2 y}}
1=−y′siny→y′=−siny1=−1−cos2y1
又因为
y
=
arccos
x
y = \arccos x
y=arccosx 所以:
y
′
=
−
1
1
−
cos
2
(
arccos
x
)
=
−
1
1
−
x
2
y' = -\frac{1}{\sqrt{1-\cos^2(\arccos x)}} = -\frac{1}{\sqrt{1-x^2}}
y′=−1−cos2(arccosx)1=−1−x21
求 arctan x \arctan x arctanx 的导数:
设
y
=
arctan
x
y = \arctan x
y=arctanx 则
x
=
tan
y
x = \tan y
x=tany两边同时求导得到:
1
=
y
′
(
tan
y
)
′
=
y
′
(
sin
y
cos
y
)
′
=
y
′
(
cos
2
y
+
sin
2
y
cos
2
y
)
=
y
′
cos
2
y
1 = y' (\tan y)' = y' \left(\frac{\sin y}{\cos y}\right)' = y' \left( \frac{\cos^2 y + \sin^2 y}{\cos^2 y} \right) = \frac{y'}{\cos^2 y}
1=y′(tany)′=y′(cosysiny)′=y′(cos2ycos2y+sin2y)=cos2yy′
所以:
y
′
=
cos
2
y
=
cos
2
y
sin
2
y
+
cos
2
y
=
1
1
+
tan
2
y
y' = \cos^2 y = \frac{\cos^2 y}{\sin^2 y + \cos^2 y} = \frac{1}{1 + \tan^2 y}
y′=cos2y=sin2y+cos2ycos2y=1+tan2y1
又因为
y
=
arctan
x
y = \arctan x
y=arctanx 所以:
y
′
=
1
1
+
tan
2
(
arctan
x
)
=
1
1
+
x
2
y' = \frac{1}{1 +\tan^2(\arctan x)} = \frac{1}{1 + x^2}
y′=1+tan2(arctanx)1=1+x21