高等数学学习笔记1

关于极限

二项式定理

( a + b ) n = C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + ⋯ + C n n − 1 a b n − 1 + C n n b n = ∑ i = 0 n C n i a n − i b i (a + b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \cdots + C_n^{n-1}ab^{n-1} + C_n^nb^n = \sum_{i=0}^{n}C_n^i a^{n-i}b^i (a+b)n=Cn0an+Cn1an1b+Cn2an2b2++Cnn1abn1+Cnnbn=i=0nCnianibi


极限运算法则(们)

lim ⁡ n → ∞ ( x n + y n ) = lim ⁡ n → ∞ x n + lim ⁡ n → ∞ y n lim ⁡ n → ∞ ( x n y n ) = lim ⁡ n → ∞ x n ⋅ lim ⁡ n → ∞ y n lim ⁡ n → ∞ ( x n y n ) = lim ⁡ n → ∞ x n lim ⁡ n → ∞ y n lim ⁡ n → ∞ x n y n = ( lim ⁡ n → ∞ x n ) lim ⁡ n → ∞ y n \begin{aligned} & \lim_{n\to \infty}(x_n+y_n) = \lim_{n\to \infty}x_n + \lim_{n\to \infty} y_n \\ \\ & \lim_{n\to \infty}(x_ny_n) = \lim_{n\to \infty}x_n \cdot \lim_{n\to \infty}y_n\\ \\ & \lim_{n\to \infty}\left( \frac{x_n}{y_n} \right) = \frac{\lim_{n\to \infty}x_n}{\lim_{n\to \infty}y_n} \\ \\ &\lim_{n\to \infty}x_n^{y_n} = \left(\lim_{n\to \infty}x_n\right)^{\lim_{n\to \infty}y_n} \end{aligned} nlim(xn+yn)=nlimxn+nlimynnlim(xnyn)=nlimxnnlimynnlim(ynxn)=limnynlimnxnnlimxnyn=(nlimxn)limnyn


Stolz 定理

两个数列 { x n } \lbrace x_n \rbrace {xn} { y n } \lbrace y_n \rbrace {yn},其中 y n y_n yn 是无穷大量。如果:
lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = a \lim_{n\to \infty}\frac{x_n - x_{n-1}}{y_n-y_{n-1}} = a nlimynyn1xnxn1=a
则:
lim ⁡ n → ∞ x n y n = a \lim_{n\to \infty} \frac{x_n}{y_n} = a nlimynxn=a


夹逼定理

三个数列 { x n } \lbrace x_n \rbrace {xn} , { y n } \lbrace y_n \rbrace {yn} { z n } \lbrace z_n \rbrace {zn}。若:
x n ≤ y n ≤ z n 且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a x_n \leq y_n \leq z_n \qquad 且 \qquad \lim_{n\to \infty}x_n = \lim_{n\to \infty}z_n = a xnynznnlimxn=nlimzn=a
则:
lim ⁡ n → ∞ y n = a \lim_{n\to \infty}y_n = a nlimyn=a


题(们)

(1)
lim ⁡ n → ∞ ( 1 + 1 2 + 1 3 + ⋯ + 1 n ) 1 n ≤ lim ⁡ n → ∞ n 1 n = 1 \lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} \leq \lim_{n\to \infty}n^{\frac{1}{n}} = 1 nlim(1+21+31++n1)n1nlimnn1=1
lim ⁡ n → ∞ ( 1 + 1 2 + 1 3 + ⋯ + 1 n ) 1 n ≥ lim ⁡ n → ∞ 1 1 n = 1 \lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} \geq \lim_{n\to \infty}1^{\frac{1}{n}} = 1 nlim(1+21+31++n1)n1nlim1n1=1
∴ lim ⁡ n → ∞ ( 1 + 1 2 + 1 3 + ⋯ + 1 n ) 1 n = 1 \therefore \lim_{n\to \infty}(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n})^{\frac{1}{n}} = 1 nlim(1+21+31++n1)n1=1


(2)
lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) ≤ lim ⁡ n → ∞ n n + n = lim ⁡ n → ∞ 1 1 + 1 n = 1 \lim_{n\to \infty}(\frac{1}{n + \sqrt{1}} + \frac{1}{n + \sqrt{2}} + \cdots +\frac{1}{n + \sqrt{n}}) \leq \lim_{n\to \infty} \frac{n}{n + \sqrt{n}} = \lim_{n\to \infty}\frac{1}{1+\frac{1}{\sqrt{n}}} = 1 nlim(n+1 1+n+2 1++n+n 1)nlimn+n n=nlim1+n 11=1
lim ⁡ n → ∞ ( n n + 1 + n n + 2 + ⋯ + n n + n ) ≥ lim ⁡ n → ∞ n n + 1 = 1 1 + 1 n = 1 \lim_{n\to \infty}({\frac{n}{n +\sqrt{1}} + \frac{n}{n +\sqrt{2}} +\cdots+ \frac{n}{n +\sqrt{n}}}) \geq \lim_{n\to \infty}\frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} = 1 nlim(n+1 n+n+2 n++n+n n)nlimn+1n=1+n11=1
∴ lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) = 1 \therefore \lim_{n\to \infty}(\frac{1}{n+\sqrt{1}} + \frac{1}{n +\sqrt{2}} + \cdots + \frac{1}{n +\sqrt{n}}) = 1 nlim(n+1 1+n+2 1++n+n 1)=1


(3)
lim ⁡ n → ∞ ∑ k = n 2 ( n + 1 ) 2 1 k ≤ lim ⁡ n → ∞ ( n + 1 ) 2 − n 2 + 1 n + 1 = lim ⁡ n → ∞ 2 = 2 \lim_{n\to \infty}\sum_{k = n^2}^{(n+1)^2}\frac{1}{\sqrt{k}} \leq \lim_{n\to \infty}\frac{(n+1)^2-n^2+1}{n+1} = \lim_{n\to \infty}2 = 2 nlimk=n2(n+1)2k 1nlimn+1(n+1)2n2+1=nlim2=2
lim ⁡ n → ∞ ∑ k = n 2 ( n + 1 ) 2 1 k ≥ ( n + 1 ) 2 − n 2 + 1 n = 2 lim ⁡ n → ∞ n n + 1 = 2 lim ⁡ n → ∞ 1 1 + 1 n = 2 \lim_{n\to \infty}\sum_{k = n^2}^{(n+1)^2}\frac{1}{\sqrt{k}} \geq \frac{(n+1)^2-n^2+1}{n} = 2\lim_{n\to \infty}\frac{n}{n+1} = 2\lim_{n\to \infty}\frac{1}{1+\frac{1}{n}} = 2 nlimk=n2(n+1)2k 1n(n+1)2n2+1=2nlimn+1n=2nlim1+n11=2


(4)
lim ⁡ n → ∞ 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋯ ( 2 n ) ≥ lim ⁡ n → ∞ ( 1 2 ) n = 0 \lim_{n\to \infty}\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \geq \lim_{n\to \infty}(\frac{1}{2})^n = 0 nlim246(2n)135(2n1)nlim(21)n=0
令 G = ∏ i = 1 n 2 i − 1 2 i , P = ∏ i = 1 n 2 i 2 i + 1 令 G = \prod_{i=1}^{n}\frac{2i-1}{2i},P = \prod_{i=1}^{n}\frac{2i}{2i+1} G=i=1n2i2i1P=i=1n2i+12i
G < P 且 G P = 1 2 n + 1 ∴ G < 1 2 n + 1 → lim ⁡ n → ∞ G ≤ lim ⁡ n → ∞ 1 2 n + 1 = 0 G < P 且 GP = \frac{1}{2n+1} \therefore G < \frac{1}{\sqrt{2n+1}} \rightarrow \lim_{n\to \infty}G \leq \lim_{n\to \infty}\frac{1}{\sqrt{2n+1}} = 0 G<PGP=2n+11G<2n+1 1nlimGnlim2n+1 1=0
lim ⁡ n → ∞ 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋯ ( 2 n ) = 0 \lim_{n\to \infty}\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} = 0 nlim246(2n)135(2n1)=0


(1)
lim ⁡ n → ∞ 3 n 2 + 4 n − 1 n 2 + 1 = 3 + lim ⁡ n → ∞ n − 1 n 2 + 1 = 3 + lim ⁡ n → ∞ 1 − 1 n n + 1 n = 3 \lim_{n\to \infty}\frac{3n^2+4n-1}{n^2+1} = 3 + \lim_{n\to \infty}\frac{n-1}{n^2+1} = 3 + \lim_{n\to \infty}\frac{1-\frac{1}{n}}{n+\frac{1}{n}} = 3 nlimn2+13n2+4n1=3+nlimn2+1n1=3+nlimn+n11n1=3


(2)
lim ⁡ n → ∞ n 3 + 2 n 2 − 3 n + 1 2 n 3 − n + 3 = lim ⁡ n → ∞ 1 + 2 n + 3 n 2 + 1 n 3 2 − 1 n + 1 n 3 = 1 2 \lim_{n\to \infty}\frac{n^3+2n^2-3n+1}{2n^3-n+3} = \lim_{n\to \infty}\frac{1 + \frac{2}{n} + \frac{3}{n^2} + \frac{1}{n^3}}{2 - \frac{1}{n} + \frac{1}{n^3}} = \frac{1}{2} nlim2n3n+3n3+2n23n+1=nlim2n1+n311+n2+n23+n31=21


(3)
lim ⁡ n → ∞ 3 n + n 3 3 n + 1 + ( n + 1 ) 3 = lim ⁡ n → ∞ 1 + n 3 3 n 3 + ( n + 1 ) 3 3 n = 1 3 ( lim ⁡ n → ∞ n k a n = 0 证 明 见 8 ) \lim_{n\to \infty}\frac{3^n + n^3}{3^{n+1}+(n+1)^3} = \lim_{n\to \infty}\frac{1+\frac{n^3}{3^n}}{3 + \frac{(n+1)^3}{3^n}} = \frac{1}{3} (\lim_{n\to \infty}\frac{n^k}{a^n} = 0 证明见 8) nlim3n+1+(n+1)33n+n3=nlim3+3n(n+1)31+3nn3=31nlimannk=08


(4)
lim ⁡ n → ∞ ( n 2 + 1 n − 1 ) sin ⁡ n π 2 = [ ( lim ⁡ n → ∞ n 2 + 1 n ) − 1 ] lim ⁡ n → ∞ sin ⁡ n π 2 = 0 \lim_{n\to \infty}(\sqrt[n]{n^2+1}-1)\sin\frac{n\pi}{2} = \Bigg[\Big(\lim_{n\to \infty}\sqrt[n]{n^2+1}\Big)-1\Bigg]\lim_{n\to \infty}\sin\frac{n\pi}{2} = 0 nlim(nn2+1 1)sin2nπ=[(nlimnn2+1 )1]nlimsin2nπ=0


(5)
lim ⁡ n → ∞ n ( n + 1 − n ) = lim ⁡ n → ∞ ( n 2 + n − n ) ( n 2 + n + n ) n 2 + n + n = lim ⁡ n → ∞ n n 2 + n + n = lim ⁡ n → ∞ 1 1 + 1 + 1 n = 1 2 \begin{aligned} &\lim_{n\to \infty}\sqrt{n}(\sqrt{n+1} - \sqrt{n}) = \lim_{n\to \infty}\frac{(\sqrt{n^2+n}-n)(\sqrt{n^2+n} + n)}{\sqrt{n^2+n}+n}\\ = &\lim_{n\to \infty}\frac{n}{\sqrt{n^2+n}+n} = \lim_{n\to \infty}\frac{1}{1 + \sqrt{1+\frac{1}{n}}} = \frac{1}{2} \end{aligned} =nlimn (n+1 n )=nlimn2+n +n(n2+n n)(n2+n +n)nlimn2+n +nn=nlim1+1+n1 1=21


(6)
lim ⁡ n → ∞ ( 1 − 1 2 2 ) ( 1 − 1 3 2 ) ⋯ ( 1 − 1 n 2 ) = lim ⁡ n → ∞ 2 2 − 1 2 2 ⋅ 3 2 − 1 3 2 ⋅ 4 2 − 1 4 2 ⋯ n 2 − 1 n 2 = lim ⁡ n → ∞ ( 2 + 1 ) ( 2 − 1 ) ( 3 + 1 ) ( 3 − 1 ) ( 4 + 1 ) ( 4 − 1 ) ⋯ ( n + 1 ) ( n − 1 ) 2 2 ⋅ 3 2 ⋅ 4 2 ⋯ n 2 = lim ⁡ n → ∞ n + 1 2 n = lim ⁡ n → ∞ 1 + 1 n 2 = 1 2 \begin{aligned} &\lim_{n\to \infty} (1-\frac{1}{2^2})(1-\frac{1}{3^2})\cdots (1-\frac{1}{n^2})\\ = & \lim_{n\to \infty}\frac{2^2-1}{2^2} \cdot \frac{3^2-1}{3^2} \cdot \frac{4^2-1}{4^2} \cdots \frac{n^2-1}{n^2}\\ = &\lim_{n\to \infty}\frac{(2+1)(2-1)(3+1)(3-1)(4+1)(4-1) \cdots (n+1)(n-1)}{2^2\cdot3^2\cdot4^2\cdots n^2} \\ = &\lim_{n\to \infty}\frac{n+1}{2n} = \lim_{n\to \infty}\frac{1+\frac{1}{n}}{2} = \frac{1}{2} \end{aligned} ===nlim(1221)(1321)(1n21)nlim222213232142421n2n21nlim223242n2(2+1)(21)(3+1)(31)(4+1)(41)(n+1)(n1)nlim2nn+1=nlim21+n1=21


(7)
lim ⁡ n → ∞ n ( n 2 + 1 4 − n + 1 ) = lim ⁡ n → ∞ n n 2 + 1 4 + n 2 + 2 n + 1 4 = lim ⁡ n → ∞ n n 2 + 1 − n 2 + 2 n + 1 n 2 + 1 4 + n 2 + 2 n + 1 4 = lim ⁡ n → ∞ n − 2 n ( n 2 + 1 4 + n 2 + 2 n + 1 4 ) ( n 2 + 1 + n 2 + 2 n + 1 ) = lim ⁡ n → ∞ − 2 n 3 2 ( n 2 + 1 4 + n 2 + 2 n + 1 4 ) ( n 2 + 1 + n 2 + 2 n + 1 ) = lim ⁡ n → ∞ − 2 n 3 2 4 n 3 2 = − 1 2 \begin{aligned} & \lim_{n\to \infty}\sqrt{n}(\sqrt[4]{n^2+1}- \sqrt{n+1})\\ = & \lim_{n\to \infty}\sqrt{n}{\sqrt[4]{n^2+1} + \sqrt[4]{n^2+2n+1}}\\ = & \lim_{n\to \infty}\sqrt{n}\frac{\sqrt{n^2+1} - \sqrt{n^2+2n+1}}{\sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1}}\\ = & \lim_{n\to \infty}\sqrt{n}\frac{-2n}{\left( \sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1} \right) \left( \sqrt{n^2+1}+\sqrt{n^2+2n+1} \right) }\\ = & \lim_{n\to \infty} \frac{-2n^{\frac{3}{2}}}{\left( \sqrt[4]{n^2+1}+\sqrt[4]{n^2+2n+1} \right) \left( \sqrt{n^2+1}+\sqrt{n^2+2n+1} \right) }\\ = & \lim_{n\to \infty}\frac{-2n^{\frac{3}{2}}}{4n^{\frac32}} = -\frac 12 \end{aligned} =====nlimn (4n2+1 n+1 )nlimn 4n2+1 +4n2+2n+1 nlimn 4n2+1 +4n2+2n+1 n2+1 n2+2n+1 nlimn (4n2+1 +4n2+2n+1 )(n2+1 +n2+2n+1 )2nnlim(4n2+1 +4n2+2n+1 )(n2+1 +n2+2n+1 )2n23nlim4n232n23=21


(8)
lim ⁡ n → ∞ ( 1 2 + 3 2 2 + ⋯ + 2 n − 1 2 n ) \lim_{n\to \infty}(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n-1}{2^n}) nlim(21+223++2n2n1)


  1. 证明:若 lim ⁡ n → ∞ a n = a \lim_{n\to \infty} a_n = a limnan=a lim ⁡ n → ∞ a 1 + a 2 + a 3 + ⋯ + a n n = a \lim_{n\to \infty}\frac{a_1+a_2+a_3+\cdots + a_n}{n} = a limnna1+a2+a3++an=a
      令 x n = a 1 + ⋯ + a n , y n = n x_n = a_1+\cdots+a_n,y_n = n xn=a1++anyn=n
    lim ⁡ n → ∞ 1 1 + ⋯ + a n n = lim ⁡ n → ∞ x n + 1 − x n y n + 1 − y n = lim ⁡ n → ∞ a n + 1 1 = a \begin{aligned} \lim_{n\to \infty}\frac{1_1+\cdots+a_n}{n} = \lim_{n\to \infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n} = \lim_{n\to \infty}\frac{a_{n+1}}{1} = a \end{aligned} nlimn11++an=nlimyn+1ynxn+1xn=nlim1an+1=a
      证毕

  1. a n > 0 a_n > 0 an>0, 且 lim ⁡ n → ∞ a n = a \lim_{n\to \infty}a_n = a limnan=a,证明: lim ⁡ n → ∞ a 1 a 2 ⋯ a n n = a \lim_{n\to \infty}\sqrt[n]{a_1a_2\cdots a_n} = a limnna1a2an =a
    lim ⁡ n → ∞ a 1 ⋯ a n n ≤ lim ⁡ n → ∞ a 1 + ⋯ + a n n = a \lim_{n\to \infty}\sqrt[n]{a_1\cdots a_n} \leq \lim_{n\to \infty}\frac{a_1 + \cdots + a_n}{n} = a nlimna1an nlimna1++an=a
    lim ⁡ n → ∞ a a ⋯ a n n ≥ lim ⁡ n → ∞ a n = a \lim_{n\to \infty}\sqrt[n]{a_a\cdots a_n} \geq \lim_{n\to \infty}a_n = a nlimnaaan nliman=a
    ∴ lim ⁡ n → ∞ a 1 a 2 ⋯ a n n = a \therefore \lim_{n\to \infty}\sqrt[n]{a_1a_2\cdots a_n} = a nlimna1a2an =a
      证毕

  1. a n > 0 a_n > 0 an>0 (n = 1, 2, 3…),且 lim ⁡ n → ∞ a n + 1 a n = a \lim_{n\to \infty}\frac{a_{n+1}}{a_n} = a limnanan+1=a,求证 lim ⁡ n → ∞ a n n = a \lim_{n\to \infty}\sqrt[n]{a_n} = a limnnan =a

  1. lim ⁡ n → ∞ 1 2 + 3 3 + 5 2 + ⋯ + ( 2 n + 1 ) 2 n 3 \lim_{n\to \infty}\frac{1^2 + 3^3 + 5^2 + \cdots + (2n+1)^2}{n^3} limnn312+33+52++(2n+1)2

  1. 用 Stolz 定理求 lim ⁡ n → ∞ log ⁡ a n n \lim_{n\to \infty}\frac{\log_an}{n} limnnlogan lim ⁡ n → ∞ n k a n \lim_{n\to \infty}\frac{n^k}{a^n} limnannk
    lim ⁡ n → ∞ log ⁡ a n n = lim ⁡ n → ∞ log ⁡ a ( n + 1 ) − log ⁡ a n n + 1 − n = lim ⁡ n → ∞ log ⁡ a ( n + 1 n ) = lim ⁡ n → ∞ log ⁡ a ( 1 + 1 n ) = 0 \begin{aligned} \lim_{n\to \infty}\frac{\log_an}{n} = &\lim_{n\to \infty}\frac{\log_a(n+1)-\log_an}{n+1-n} \\ = & \lim_{n\to \infty}\log_a(\frac{n+1}{n})\\ = & \lim_{n\to \infty}\log_a(1+\frac{1}{n}) = 0 \end{aligned} nlimnlogan===nlimn+1nloga(n+1)logannlimloga(nn+1)nlimloga(1+n1)=0
    lim ⁡ n → ∞ n k a n = lim ⁡ n → ∞ n k − ( n − 1 ) k a n − a n − 1 = lim ⁡ n → ∞ C k 1 n k − 1 − C k 2 n k − 2 + C k 3 n k − 3 − ⋯ + 1 a n − a n − 1 \begin{aligned} &\lim_{n\to \infty}\frac{n^k}{a^n} = \lim_{n\to \infty}\frac{n^k-(n-1)^k}{a^{n}-a^{n-1}}\\ = & \lim_{n\to \infty}\frac{C_k^1n^{k-1}-C_k^2n^{k-2}+C_k^3n^{k-3}-\cdots+1}{a^n-a^{n-1}} \end{aligned} =nlimannk=nlimanan1nk(n1)knlimanan1Ck1nk1Ck2nk2+Ck3nk3+1

  1. { x n } \lbrace x_n \rbrace {xn} 是无穷大量, ∣ y n ∣ ≥ δ > 0 |y_n| \geq \delta > 0 ynδ>0,证明 { x n y n } \lbrace x_ny_n \rbrace {xnyn} 是无穷大量。

导数

常见的导数(们)

( C ) ′ = 0 ( sin ⁡ x ) ′ = c o s x ( cos ⁡ x ) ′ = − s i n x ( ln ⁡ x ) ′ = 1 x ( log ⁡ a x ) ′ = 1 x l n a ( e x ) ′ = e x ( a x ) ′ = a x l n a ( x n ) ′ = n x n − 1 \begin{aligned} &(C)' = 0\\ &(\sin x)' = cosx\\ &(\cos x)' = -sinx\\ &(\ln x)' = \frac 1x\\ &(\log_ax)' = \frac{1}{xlna}\\ &(e^x)' = e^x\\ &(a^x)' = a^xlna\\ &(x^n)' = nx^{n-1} \end{aligned} (C)=0(sinx)=cosx(cosx)=sinx(lnx)=x1(logax)=xlna1(ex)=ex(ax)=axlna(xn)=nxn1


求导法则(们)

d ( f ( x ) + g ( x ) ) d x = d f ( x ) d x + d g ( x ) d x d ( f ( x ) g ( x ) ) d x = d f ( x ) d x g ( x ) + d g ( x ) d x f ( x ) d ( f ( x ) g ( x ) ) d x = d f ( x ) d x g ( x ) − d g ( x ) d x f ( x ) g 2 ( x ) d f ( g ( x ) ) d x = d f ( g ( x ) ) d g ( x ) ⋅ d g ( x ) d x \begin{aligned} &\frac{d(f(x)+g(x))}{dx} = \frac{df(x)}{dx} + \frac{dg(x)}{dx}\\ \\ &\frac{d\left(f(x)g(x)\right)}{dx} = \frac{df(x)}{dx}g(x) + \frac{dg(x)}{dx}f(x)\\ \\ &\frac{d\left(\frac{f(x)}{g(x)}\right)}{dx} = \frac{\frac{df(x)}{dx}g(x) - \frac{dg(x)}{dx}f(x)}{g^2(x)} \\ \\ &\frac{df(g(x))}{dx} = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx} \end{aligned} dxd(f(x)+g(x))=dxdf(x)+dxdg(x)dxd(f(x)g(x))=dxdf(x)g(x)+dxdg(x)f(x)dxd(g(x)f(x))=g2(x)dxdf(x)g(x)dxdg(x)f(x)dxdf(g(x))=dg(x)df(g(x))dxdg(x)
  需要注意的是,复合函数求导法则不适用于指数形式,比如: x x x^x xx 的导数应该这样求:
( x x ) ′ = ( e ln ⁡ ( x x ) ) ′ = ( e x ln ⁡ x ) ′ = e x ln ⁡ x ⋅ ( ln ⁡ x + 1 ) \begin{aligned} (x^x)' = \left(e^{\ln(x^x)}\right)' = \left( e^{x\ln x} \right)' = e^{x\ln x} \cdot (\ln x + 1) \end{aligned} (xx)=(eln(xx))=(exlnx)=exlnx(lnx+1)


题(们)

  当 a 为何值时,直线 y = x y = x y=x 能与 y = log ⁡ a x y = \log_ax y=logax 相切,切点在哪里。
  因为相切所以切点切线斜率为 1,即:
( log ⁡ a x ) ′ = 1 x ln ⁡ a = 1 \left( \log_ax \right)' = \frac{1}{x\ln a} = 1 (logax)=xlna1=1
  又因为切点在 y = x y = x y=x 上,所以横纵坐标相等,即:
x = log ⁡ a x x = \log_ax x=logax
  联立得:
{ 1 x 0 ln ⁡ a = 1 x 0 = log ⁡ a x 0 ∵ 1 x 0 ln ⁡ a = 1 ∴ x 0 = 1 ln ⁡ a ∵ x 0 = log ⁡ a x 0 ∴ x 0 = ln ⁡ x 0 ln ⁡ a ∴ ln ⁡ x 0 = 1 → x 0 = e → ln ⁡ a = 1 e → a = e 1 e \begin{aligned} &\begin{cases} \frac{1}{x_0\ln a} = 1 \\ x_0 = \log_a x_0 \end{cases}\\ & \because \frac{1}{x_0\ln a} = 1 \quad \therefore x_0 = \frac{1}{\ln a}\\ & \because x_0 = \log_ax_0 \quad \therefore x_0 = \frac{\ln x_0}{\ln a}\\ &\therefore \ln x_0 = 1 \rightarrow x_0 = e \rightarrow \ln a = \frac{1}{e} \rightarrow a = e^{\frac{1}{e}} \end{aligned} {x0lna1=1x0=logax0x0lna1=1x0=lna1x0=logax0x0=lnalnx0lnx0=1x0=elna=e1a=ee1
  所以当 a = e 1 e a = e^{\frac{1}{e}} a=ee1 时, y = log ⁡ a x y = \log_ax y=logax y = x y=x y=x 相切,切点为 ( e , e ) (e, e) (e,e)

  求 arcsin ⁡ x \arcsin x arcsinx 的导数:

  我们知道如果 y = arcsin ⁡ x y = \arcsin x y=arcsinx x = sin ⁡ y x = \sin y x=siny。等式两边同时求导,得到:
y ′ cos ⁡ y = 1 → y ′ = 1 cos ⁡ y = 1 1 − sin ⁡ 2 y y' \cos y = 1 \rightarrow y' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} ycosy=1y=cosy1=1sin2y 1

  又因为 y = arcsin ⁡ x y = \arcsin x y=arcsinx,所以:

y ′ = 1 1 − sin ⁡ 2 ( arcsin ⁡ x ) = 1 1 − x 2 y' = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}} y=1sin2(arcsinx) 1=1x2 1

  求 arccos ⁡ x \arccos x arccosx的导数:

  因为 y = arccos ⁡ x y = \arccos x y=arccosx,我们就有 x = cos ⁡ y x = \cos y x=cosy。两边同时求导得到:
1 = − y ′ sin ⁡ y → y ′ = − 1 sin ⁡ y = − 1 1 − cos ⁡ 2 y 1 = -y' \sin y \rightarrow y' = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1-\cos^2 y}} 1=ysinyy=siny1=1cos2y 1

  又因为 y = arccos ⁡ x y = \arccos x y=arccosx 所以:
y ′ = − 1 1 − cos ⁡ 2 ( arccos ⁡ x ) = − 1 1 − x 2 y' = -\frac{1}{\sqrt{1-\cos^2(\arccos x)}} = -\frac{1}{\sqrt{1-x^2}} y=1cos2(arccosx) 1=1x2 1

  求 arctan ⁡ x \arctan x arctanx 的导数:

  设 y = arctan ⁡ x y = \arctan x y=arctanx x = tan ⁡ y x = \tan y x=tany两边同时求导得到:
1 = y ′ ( tan ⁡ y ) ′ = y ′ ( sin ⁡ y cos ⁡ y ) ′ = y ′ ( cos ⁡ 2 y + sin ⁡ 2 y cos ⁡ 2 y ) = y ′ cos ⁡ 2 y 1 = y' (\tan y)' = y' \left(\frac{\sin y}{\cos y}\right)' = y' \left( \frac{\cos^2 y + \sin^2 y}{\cos^2 y} \right) = \frac{y'}{\cos^2 y} 1=y(tany)=y(cosysiny)=y(cos2ycos2y+sin2y)=cos2yy

  所以:
y ′ = cos ⁡ 2 y = cos ⁡ 2 y sin ⁡ 2 y + cos ⁡ 2 y = 1 1 + tan ⁡ 2 y y' = \cos^2 y = \frac{\cos^2 y}{\sin^2 y + \cos^2 y} = \frac{1}{1 + \tan^2 y} y=cos2y=sin2y+cos2ycos2y=1+tan2y1

  又因为 y = arctan ⁡ x y = \arctan x y=arctanx 所以:
y ′ = 1 1 + tan ⁡ 2 ( arctan ⁡ x ) = 1 1 + x 2 y' = \frac{1}{1 +\tan^2(\arctan x)} = \frac{1}{1 + x^2} y=1+tan2(arctanx)1=1+x21


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值