数论函数(一些题)

本文详细介绍了线性筛和埃氏筛两种算法,用于高效地计算质数、欧拉函数和莫比乌斯函数。线性筛能在线性时间内筛出质数,而埃氏筛则常用于计算欧拉函数和莫比乌斯函数。通过实例代码展示了这两种筛法的具体实现,并给出了在实际问题中如P2185仪仗队和P2522[HAOI2011]Problem B中的应用,展示了如何利用筛法解决数论问题。
摘要由CSDN通过智能技术生成

传送门:数论函数学习笔记

埃氏筛

  埃氏筛的思想很简单,就是从前往后,遇到一个质数就把所有后面小于 n 的这个质数的倍数全都标记为合数。后面遇到他们就直接跳过。

一、筛质数

  按照上面的思想直接模拟就好了,时间复杂度 O ( n log ⁡ log ⁡ n ) O(n \log \log n) O(nloglogn)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 100100

int v[MAXN] = { 0 };              // 合数标记 
void primes(int n){
	memset(v, 0, sizeof(v));
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		cout << i << endl;
		for(int j = 1; j <= n / i; j++) v[i * j] = 1;
	}
}

int main(){
	primes(100);
	return 0;
}

二、筛欧拉函数

  利用欧拉函数的计算式和埃氏筛,能在 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间内筛出欧拉函数的值。就是首先初始化所有的 phi[i] = 1,然后再枚举从 2 到 n 的每个数,用埃氏筛找出质数,然后把后面质数的倍数根据计算式计算就好了。

#include<bits/stdc++.h>
using namespace std;
#define MAXN 100100

int phi[MAXN] = { 0 };
void euler(int n){
	for(int i = 1; i <= n; i++) phi[i] = i;
	for(int i = 2; i <= n; i++){
		if(phi[i] == i)
			for(int j = i; j <= n; j += i)
				phi[j] = phi[j] / i * (i - 1);
	}
}

int main(){
	euler(20);
	for(int i = 1; i <= 20; i++){
		cout << "phi[" << i << "] = " << phi[i] << endl;
	}
	return 0;
}

三、筛莫比乌斯函数

  首先把所有的 mu 初始化为 1,接下来对于每一个质数 p 把 mu[p] 变成 -1。并扫描 p 的倍数们看他们能否被 p 2 p^2 p2 整除,如果可以 mu[x] = 0,如果不行 mu[x] = -mu[x]。

#include<bits/stdc++.h>
using namespace std;
#define MAXN 100100

int v[MAXN] = { 0 };
int mu[MAXN] = { 0 };
void mobius(int n){
	memset(v, 0, sizeof(v));
	for(int i = 2; i <= n; i++) mu[i] = 1;
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		mu[i] = -1;
		for(int j = 2 * i; j <= n; j += i){
			v[j] = 1;
			if((j / i) % i == 0) mu[j] = 0;
			else mu[j] *= -1;
		}
	}
}

int main(){
	mobius(20);
	for(int i = 1; i <= 20; i++){
		cout << "mu[" << i << "] = " << mu[i] << endl;
	}
	return 0;
}

线性筛

一、筛质数

  顾名思义,这玩意儿能在线性的时间内筛出质数。具体的做法是优化一下埃氏筛,在埃氏筛里面,一个合数可能被很多个质数标记过,比如 12 就被 2 和 3 同时标记过。这样就会降低我们的效率。线性筛的想法就是让所有的合数只有一种被筛出来的方式。也就是被它的最小质因子筛出来。具体做法如下:

  1. 枚举 2 ∼ n 2 \sim n 2n 的所有数,考虑用一下方式维护一个数组 v(表示这个数的最小质因子)。
  2. 如果 v[i] = i,那么这个是是质数,把它存下来。
  3. 扫描不大于 v[i] 的所有质数 p,令 v[ip] = p(很好理解吧)。
#include<bits/stdc++.h>
using namespace std;
#define MAXN 100100

int v[MAXN] = { 0 };
int prime[MAXN] = { 0 };
int primes(int n){
	memset(v, 0, sizeof(v));
	int cnt = 0;                                                 // 质数的个数
	for(int i = 2; i <= n; i++){
		if(!v[i]){ 
			v[i] = i; prime[++cnt] = i; 
		}
		for(int j = 1; j <= cnt; j++){                           // 枚举所有质数 
			if(prime[j] > v[i] or prime[j] > n / i) break;       // 质数比它大或者超过范围 
			v[i * prime[j]] = prime[j];                          // 更新最小质因子 
		}
	}
	return cnt;
}

int main(){
	int num = primes(100);
	for(int i = 1; i <= num; i++){
		cout << prime[i] << endl;
	}
	return 0;
}

二、筛欧拉函数

  这就要用到几个欧拉函数的性质了:

  1. 如果 p ∣ n p \mid n pn p 2 ∣ n p^2 \mid n p2n 则有 φ ( n ) = φ ( n p ) × p \varphi(n) = {\varphi(\frac np)} \times p φ(n)=φ(pn)×p
  2. 如果 p ∣ n p \mid n pn p 2 ∤ n p^2 \nmid n p2n 则有 φ ( n ) = φ ( n p ) × ( p − 1 ) \varphi(n) = \varphi(\frac np) \times (p-1) φ(n)=φ(pn)×(p1)

  我们发现这两个判断和线性筛的两个判断很类似,所以我们可以利用线性筛,从 φ ( n p ) \varphi(\frac np) φ(pn) 递推到 φ ( n ) \varphi(n) φ(n)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 100100

int v[MAXN] = { 0 };
int phi[MAXN] = { 0 };
void euler(int n){
	memset(v, 0, sizeof(v));
	int cnt = 0;
	for(int i = 2; i <= n; i++){
		if(!v[i]){
			v[i] = i; prime[++cnt] = i;
			phi[i] = i - 1;
		}
		for(int j = 1; j <= cnt; j++){
			if(prime[j] > v[i] or prime[j] > n / i) break;
			v[i *prime[j]] = prime[j];
			if(i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j] - 1);
			else phi[i * prime[j]] = phi[i] * prime[j];
		}
	}
}

int main(){
	euler(20);
	for(int i = 1; i <= 20; i++){
		cout << "phi[" << i << "] = " << phi[i] << endl;
	}
	return 0;
}

P2185 仪仗队

P2185 [SDOI2008]

  题目大意是这样的,有一个点阵(方阵),你站在左下角,问你能总共看到几个点。然后我们可以发现,如果我们将左下角的点放在坐标轴 原点,能被看见的点的横纵坐标一定是互质的(除了两个和它相邻的点)。所以我们要求解的问题的答案就是:
a n s = 2 + ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = 1 ] ans = 2 + \sum_{i=1}^n \sum_{j=1}^n [gcd(i, j) = 1] ans=2+i=1nj=1n[gcd(i,j)=1]

  然后可以对这个式子进行化简:
a n s − 2 = ∑ i = 1 n − 1 ∑ j = 1 n − 1 [ g c d ( i , j ) = 1 ] = ∑ i = 1 n − 1 ∑ j = 1 n − 1 ε ( g c d ( i , j ) ) = ∑ i = 1 n − 1 ∑ j = 1 n − 1 ∑ d ∣ g c d ( i , j ) μ ( d ) = ∑ d = 1 n − 1 ∑ i = 1 n − 1 ∑ j = 1 n − 1 [ d ∣ g c d ( i , j ) ] μ ( d ) = ∑ d = 1 n − 1 ∑ i = 1 n − 1 ∑ j = 1 n − 1 [ d ∣ i ∧ d ∣ j ] μ ( d ) = ∑ d = 1 n − 1 μ ( d ) ∑ i = 1 n − 1 ∑ j = 1 n − 1 [ d ∣ i ∧ d ∣ j ] = ∑ d = 1 n − 1 μ ( d ) ⌊ n − 1 d ⌋ 2 \begin{aligned} ans-2 = & \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} [gcd(i, j) = 1] \\ = & \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \varepsilon(gcd(i, j)) = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{d \mid gcd(i, j)}\mu(d) \\ = & \sum_{d = 1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} [d \mid gcd(i, j)]\mu(d) = \sum_{d = 1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} [d \mid i \wedge d \mid j]\mu(d) \\ = & \sum_{d=1}^{n-1} \mu(d) \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} [d \mid i \wedge d \mid j] \\ = & \sum_{d=1}^{n-1} \mu(d) \left\lfloor \frac {n-1}d \right\rfloor^2 \end{aligned} ans2=====i=1n1j=1n1[gcd(i,j)=1]i=1n1j=1n1ε(gcd(i,j))=i=1n1j=1n1dgcd(i,j)μ(d)d=1n1i=1n1j=1n1[dgcd(i,j)]μ(d)=d=1n1i=1n1j=1n1[didj]μ(d)d=1n1μ(d)i=1n1j=1n1[didj]d=1n1μ(d)dn12

  然后 μ ( d ) \mu(d) μ(d) 可以用埃氏筛预处理然后 O ( 1 ) O(1) O(1) 查询。后面的 ⌊ n d ⌋ 2 \left\lfloor \frac nd \right\rfloor^2 dn2 显然也是可以 O ( 1 ) O(1) O(1) 查询的,那么总的复杂度就是 O ( n log ⁡ n + n ) O(n\log n + n) O(nlogn+n)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 40400
#define endl '\n'

int n = 0;

int v[MAXN] = { 0 };
int mu[MAXN] = { 0 };
void mobius(int n){
	memset(v, 0, sizeof(v));
	for(int i = 1; i <= n; i++) mu[i] = 1;
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		mu[i] = -1;
		for(int j = 2 * i; j <= n; j += i){
			v[j] = 1;
			if((j / i) % i == 0) mu[j] = 0;
			else mu[j] *= -1;
		}
	}
}

int main(){
	scanf("%d", &n); n -= 1;
	if(n == 0){
		cout << 0 << endl; return 0;
	}
	mobius(n);
	int ans = 0;
	for(int d = 1; d <= n; d++){
		int temp = mu[d] * (n / d) * (n / d);
		ans += temp;
	}
	ans += 2;
	cout << ans << endl;
	return 0;
}

P2522 [HAOI2011]Problem b

P2522 [HAOI2011]Problem b
  题目大意:对于给出的 n 个询问,每次求出有多少个数对 ( x , y ) (x, y) (x,y) 满足 a ≤ x ≤ b , c ≤ y ≤ d a \leq x \leq b, c \leq y \leq d axb,cyd g c d ( x , y ) = k gcd(x, y) = k gcd(x,y)=k

  所以这个题的答案就是:
a n s = ∑ i = a b ∑ j = c d [ g c d ( i , j ) = k ] ans = \sum_{i = a}^b \sum_{j = c}^d [gcd(i, j) = k] ans=i=abj=cd[gcd(i,j)=k]

  这个式子就和上面那个题的试着长得很像了,但是这个上下界看着还是有点不舒服,因为我们想把它转化成下界为 1 的求和,于是我们利用容斥原理,转化一下问题:
a n s = ∑ i = a b ∑ j = c d [ g c d ( i , j ) = k ] = ∑ i = 1 b ∑ j = 1 d [ g c d ( i , j ) = k ] − ∑ i = 1 a − 1 ∑ j = 1 d [ g c d ( i , j ) = k ] − ∑ i = 1 b ∑ j = 1 c − 1 [ g c d ( i , j ) = k ] + ∑ i = 1 a − 1 ∑ j = 1 c − 1 [ g c d ( i , j ) = k ] \begin{aligned} ans = & \sum_{i = a}^b \sum_{j = c}^d [gcd(i, j) = k] \\ = & \sum_{i = 1}^b \sum_{j = 1}^d [gcd(i, j) = k] - \sum_{i = 1}^{a-1} \sum_{j = 1}^d [gcd(i, j) = k] - \sum_{i = 1}^b \sum_{j = 1}^{c-1} [gcd(i, j) = k] + \sum_{i = 1}^{a-1} \sum_{j = 1}^{c-1} [gcd(i, j) = k] \end{aligned} ans==i=abj=cd[gcd(i,j)=k]i=1bj=1d[gcd(i,j)=k]i=1a1j=1d[gcd(i,j)=k]i=1bj=1c1[gcd(i,j)=k]+i=1a1j=1c1[gcd(i,j)=k]

  于是问题就被转化成求 4 个和上道题差不多的式子。由上一道题我们知道:
∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] = ∑ i = 1 n ∑ j = 1 m ε ( g c d ( i , j ) k ) = ∑ i = 1 n ∑ j = 1 m ∑ p ∣ g c d ( i , j ) / k μ ( p ) = ∑ p = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m [ p ∣ g c d ( i , j ) k ] μ ( p ) = ∑ p = 1 m i n ( n , m ) μ ( p ) ∑ i = 1 n ∑ j = 1 m [ p ∣ g c d ( i , j ) k ] = ∑ p = 1 m i n ( n , m ) μ ( p ) ∑ i = 1 n ∑ j = 1 m [ p ∣ i k ∧ p ∣ j k ] = ∑ p = 1 m i n ( n , m ) μ ( p ) ∑ i = 1 n ∑ j = 1 m [ k p ∣ i ∧ k p ∣ j ] = ∑ p = 1 m i n ( n , m ) μ ( p ) ⌊ n k p ⌋ ⌊ m k p ⌋ \begin{aligned} & \sum_{i = 1}^n \sum_{j = 1}^m [gcd(i, j) = k]\\ = & \sum_{i = 1}^n \sum_{j = 1}^m \varepsilon\left( \frac{gcd(i, j)}{k} \right)= \sum_{i = 1}^n \sum_{j = 1}^m \sum_{p | gcd(i, j) / k} \mu(p) = \sum_{p = 1}^{min(n, m)}\sum_{i = 1}^n \sum_{j = 1}^m \left[ p \Big| \frac{gcd(i, j)}{k} \right]\mu(p) \\ = &\sum_{p = 1}^{min(n, m)}\mu(p) \sum_{i = 1}^n \sum_{j = 1}^m \left[ p \Big| \frac{gcd(i, j)}{k} \right] = \sum_{p = 1}^{min(n, m)}\mu(p) \sum_{i = 1}^n \sum_{j = 1}^m \left[ p \Big| \frac{i}{k} \wedge p \Big| \frac{j}{k} \right] = \sum_{p = 1}^{min(n, m)}\mu(p) \sum_{i = 1}^n \sum_{j = 1}^m \left[ kp \mid i \wedge kp \mid j \right] \\ = & \sum_{p = 1}^{min(n, m)}\mu(p) \left\lfloor \frac{n}{kp} \right\rfloor \left\lfloor \frac{m}{kp} \right\rfloor \end{aligned} ===i=1nj=1m[gcd(i,j)=k]i=1nj=1mε(kgcd(i,j))=i=1nj=1mpgcd(i,j)/kμ(p)=p=1min(n,m)i=1nj=1m[pkgcd(i,j)]μ(p)p=1min(n,m)μ(p)i=1nj=1m[pkgcd(i,j)]=p=1min(n,m)μ(p)i=1nj=1m[pkipkj]=p=1min(n,m)μ(p)i=1nj=1m[kpikpj]p=1min(n,m)μ(p)kpnkpm

  然后我们只需要写一个函数来处理这个,然后每次询问调用 4 次就好了。计算这个式子的时间复杂度是 O ( m i n ( n , m ) log ⁡ m i n ( n , m ) + m i n ( n , m ) ) O(min(n, m) \log min(n, m) + min(n, m)) O(min(n,m)logmin(n,m)+min(n,m)),所以如果我还要处理 5 × 1 0 4 5 \times 10^4 5×104 组这样的数据,就会超时,直接计算能拿 30 分。

#include<bits/stdc++.h>
using namespace std;
#define MAXN 50500
#define in read()

inline int read(){
	int x = 0; char c = getchar();
	while(c < '0' or c > '9') c = getchar();
	while('0' <= c and c <= '9'){
		x = x * 10 + c - '0'; c = getchar();
	}
	return x;
}

int t = 0; int k = 0;
int a = 0; int b = 0;
int c = 0; int d = 0;

int v[MAXN] = { 0 };
int mu[MAXN] = { 0 };
void mobius(int n){
	memset(v, 0, sizeof(v));
	for(int i = 1; i <= n; i++) mu[i] = 1;
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		mu[i] = -1;
		for(int j = 2 * i; j <= n; j += i){
			v[j] = 1;
			if((j / i) % i == 0) mu[j] = 0;
			else mu[j] *= -1;
		}
	}
}

int cal(int n, int m){
	int r = min(n, m);
	int ans = 0;
	for(int i = 1; i <= r; i++){
		int temp = mu[i] * (n / (i * k)) * (m / (i * k));
		ans += temp;
	}
	return ans;
}

int main(){
	t = in;
	mobius(50000);
	while(t--){
		a = in; b = in;
		c = in; d = in;
		k = in;
		int ans = cal(b, d) - cal(a - 1, d) - cal(b, c - 1) + cal(a - 1, c - 1);
		cout <<  ans << '\n';
	}
	return 0;
}

  下面我们考虑怎么样优化处理这个式子的时间。首先看看这个式子的样子,他长得是不是就很像整除分块qwq,那就直接整除分块计算这个式子,复杂度就被降到了 O ( m i n ( n , m ) ) O(\sqrt{min(n, m)}) O(min(n,m) ),·这样一来就能过了(不知道为什在 luogu 上过不了,但是在 bzoj上就一次过了)。bzoj 传送门:bzoj 2301

#include<bits/stdc++.h>
using namespace std;
#define MAXN 50500
#define in read()

inline int read(){
	int x = 0; char c = getchar();
	while(c < '0' or c > '9') c = getchar();
	while('0' <= c and c <= '9'){
		x = x * 10 + c - '0'; c = getchar();
	}
	return x;
}

int t = 0; int k = 0;
int a = 0; int b = 0;
int c = 0; int d = 0;

int v[MAXN] = { 0 };
int mu[MAXN] = { 0 };
int sum[MAXN] = { 0 };
void mobius(int n){
	for(int i = 1; i <= n; i++) mu[i] = 1;
	for(int i = 2; i <= n; i++){
		if(v[i]) continue;
		mu[i] = -1;
		for(int j = 2 * i; j <= n; j += i){
			v[j] = 1;
			if((j / i) % i == 0) mu[j] = 0;
			else mu[j] *= -1;
		}
	}
	for(int i = 1; i <= n; i++) sum[i] = sum[i - 1] + mu[i];
}

int cal(int n, int m){
	int x = min(n, m);
	int ans = 0;
	for(int l = 1, r; l <= x; l = r + 1){
		r = min(n / (n / l), m / (m / l));
		ans += (n / (l * k)) * (m / (l * k)) * (sum[r] - sum[l - 1]);
	}
	return ans;
}

int main(){
	t = in;
	mobius(50000);
	while(t--){
		a = in; b = in;
		c = in; d = in;
		k = in;
		int ans = cal(b, d) - cal(a - 1, d) - cal(b, c - 1) + cal(a - 1, c - 1);
		cout <<  ans << '\n';
	}
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值