Lucas 定理

Lucas 定理

结论

  结论很简单,就是一个简单的式子( p p p 是质数):

C n m ≡ C n m o d    p m m o d    p × C n p m p ( m o d p ) C_n^m \equiv C_{n \mod p}^{m \mod p} \times C_{\frac{n}{p}}^{\frac{m}{p}} \pmod p CnmCnmodpmmodp×Cpnpm(modp)

  根据这个式子,我们就能快速计算 p p p 较小的组合数了。

  具体来说,现预处理出一个数组 f r a c [ i ] frac[i] frac[i] 表示模 p p p 下的 i ! i! i!。然后我们就能写出一个 log ⁡ \log log 级别求组合数(要求 n , m < p n, m < p n,m<p)的函数:

int qp(int a, int b, int p){                          // 快速幂 
    int ans = 1 % p;
    for(; b; b >>= 1){
        if((b & 1) == 1)
            ans = (long long)ans * a % p;
        a = (long long)a * a % p;
    }
    return ans;
}

int inv(int a, int p) { return qp(a, p - 2, p); }                         // 求逆元 (质数就是 x^{p-2}) 

int C(int n, int m, int p){                                               // 正常的组合数 
	if(n < m) return 0;
	return (long long)frac[n] * inv(frac[m], p) % p * inv(frac[n - m], p) % p;
}

  然后根据我们上面给出的式子,我们发现 C n m o d    p m m o d    p C_{n \mod p}^{m \mod p} Cnmodpmmodp 是可以用 C C C 这个函数解决的。那么我们很自然的想到递归计算 C n p m p C_{\frac np}^{\frac mp} Cpnpm。就像这样:

int lucas(int n, int m, int p){                                           // lucas 求组合数 
	if(n < m) return 0;
	if(!n) return 1;
	return (long long)lucas(n / p, m / p, p) * C(n % p, m % p, p) % p;
}

式子的证明

  考虑 C p n m o d    p C_p^n \mod p Cpnmodp 的取值,注意到:

C p n = p ! n ! ( p − n ) ! C_p^n = \frac{p!}{n!(p - n)! } Cpn=n!(pn)!p!

  分子的质因数分解中 p p p 次项恰好为 1 1 1。所以只有 n = 0 ∨ n = p n = 0 \lor n = p n=0n=p 的时候 n ! ( p − n ) ! n!(p - n)! n!(pn)! 的质因子含有 p p p。所以我们得到以下式子:

C p n m o d    p = [ n = 0 ∨ n = p ] C_p^n \mod p = [n = 0 \lor n = p] Cpnmodp=[n=0n=p]

  进而:

( a + b ) p ≡ ∑ n = 0 p C p n a n b p − n ≡ ∑ n = 0 p [ n = 0 ∨ n = p ] a n b p − n ≡ a p + b p ( m o d p ) \begin{aligned} (a + b) ^ p & \equiv \sum_{n = 0}^pC_p^na^nb^{p - n} \\ & \equiv \sum_{n = 0}^p [n = 0 \lor n = p]a^nb^{p - n} \\ & \equiv a^p + b^p \pmod p \end{aligned} (a+b)pn=0pCpnanbpnn=0p[n=0n=p]anbpnap+bp(modp)

  这个式子不仅适用于整数,还适用于多项式,比如说考虑二项式 f p ( x ) = ( a x n + b x m ) p m o d    p f^p(x) = (ax^n + bx^m)^p \mod p fp(x)=(axn+bxm)pmodp 的结果:

f p ( x ) ≡ ( a x n + b x m ) p ≡ a p x p n + b p x p m ≡ a x p n + b x p m ≡ f ( x p ) ( m o d p ) \begin{aligned} f^p(x) \equiv (ax^n + bx^m)^p & \equiv a^px^{pn} + b^px^{pm} \\ & \equiv ax^{pn} + bx^{pm} \equiv f(x^p) \pmod p \end{aligned} fp(x)(axn+bxm)papxpn+bpxpmaxpn+bxpmf(xp)(modp)

  考虑二项式 ( 1 + x ) n m o d    p (1 + x) ^ n \mod p (1+x)nmodp,那么 C n m C_n^m Cnm 就是在求 x m x^m xm 次项的系数。使用上面证明过的引理,我们可以得到:

( 1 + x ) n ≡ ( 1 + x ) p ⌊ n p ⌋ ( 1 + x ) n m o d    p ≡ ( 1 + x p ) ⌊ n p ⌋ ( 1 + x ) n m o d    p ( m o d p ) (1 + x)^n \equiv (1 + x)^{p\lfloor \frac np \rfloor}(1 + x)^{n \mod p} \equiv (1 + x^p)^{\lfloor \frac np \rfloor}(1 + x)^{n \mod p} \pmod p (1+x)n(1+x)ppn(1+x)nmodp(1+xp)pn(1+x)nmodp(modp)

  注意前面那一坨只有在 p p p 的倍数的时候才会有取值,后面那一坨的最高此项是 n m o d    p ≤ p − 1 n \mod p \leq p - 1 nmodpp1,所以这俩玩意儿的卷积在任何一个位置最多有一种方式进行贡献,也就是说前者去 p p p 的倍数次项,后者取余数次项,也就是上面最初给出的式子:

C n m ≡ C n p m p × C n m o d    p m m o d    p ( m o d p ) C_n^m \equiv C_{\frac np}^{\frac mp} \times C_{n \mod p}^{m \mod p} \pmod p CnmCpnpm×Cnmodpmmodp(modp)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值