lucas定理

Lucas定理提供了一种在模质数p的情况下计算组合数C_n^m的方法,特别是当n和m非常大而质数p较小时。通过将n和m表示为p进制,可以将问题分解为更小的组合数计算,简化了大整数的处理。证明基于二项式定理和模运算性质,保证了计算的正确性。示例代码展示了如何实际应用该定理解决相关问题。
摘要由CSDN通过智能技术生成

介绍

当正整数 n , m n,m n,m很大,且质数 p p p较小的时候,要求 C n m C_n^m Cnm p p p取模后的值,可以用lucas定理。

定理内容如下:

p p p为质数, n , m n,m n,m为正整数,且 n ≥ m n\geq m nm,设 n = a p + b , m = c p + d n=ap+b,m=cp+d n=ap+b,m=cp+d,其中 0 ≤ b < p , 0 ≤ d < p 0\leq b<p,0\leq d<p 0b<p,0d<p,则有

C n m ≡ C a b × C c d ( m o d p ) C_n^m\equiv C_a^b\times C_c^d \pmod p CnmCab×Ccd(modp)

递归下去,我们可以发现,若 n n n p p p进制为 ( n 1 , n 2 … n k ‾ ) p (\overline{n_1,n_2\dots n_k})_p (n1,n2nk)p m m m p p p进制为 ( m 1 , m 2 … m k ‾ ) p (\overline{m_1,m_2\dots m_k})_p (m1,m2mk)p,则有

C n m ≡ C n k m k × C n k − 1 m k − 1 × ⋯ × C n 0 m 0 ( m o d p ) C_n^m\equiv C_{n_k}^{m_k}\times C_{n_{k-1}}^{m_{k-1}}\times \cdots\times C_{n_0}^{m_0} \pmod p CnmCnkmk×Cnk1mk1××Cn0m0(modp)

这样就可以方便地解决大整数取模的问题了,不过前提是 p p p为较小的质数。


证明

根据二项式定理, ( 1 + x ) n (1+x)^n (1+x)n x m x^m xm的系数为 C n m C_n^m Cnm

为了方便叙述,以下式子都是在模 p p p的意义下进行的。

( 1 + x ) n ≡ ( 1 + x ) a p + b ≡ ( ( 1 + x ) p ) a ( 1 + x ) b ≡ ( 1 + x p ) a ( 1 + x ) b (1+x)^n\equiv (1+x)^{ap+b}\equiv ((1+x)^p)^a(1+x)^b\equiv (1+x^p)^a(1+x)^b (1+x)n(1+x)ap+b((1+x)p)a(1+x)b(1+xp)a(1+x)b

最后一步成立是因为当 0 < i < p 0<i<p 0<i<p时, C p i = p ! i ! ( p − i ) ! C_p^i=\dfrac{p!}{i!(p-i)!} Cpi=i!(pi)!p! p p p为质数,原式的分子中可以提出一个 p p p,所以此时 C p i C_p^i Cpi p p p的倍数,可以被模去。

继续推导

( 1 + x p ) a ( 1 + x ) b ≡ ∑ i = 1 a C a i x p i ∑ j = 0 b C b j x j (1+x^p)^a(1+x)^b\equiv \sum\limits_{i=1}^aC_a^ix^{pi}\sum\limits_{j=0}^bC_b^jx^j (1+xp)a(1+x)bi=1aCaixpij=0bCbjxj

因为 b < p b<p b<p,所以 j < p j<p j<p m = c p + d m=cp+d m=cp+d,考虑 x m x^m xm的系数, x m x^m xm的系数只能为 C a c × C b d C_a^c\times C_b^d Cac×Cbd,得证 C n m ≡ C a b × C c d ( m o d p ) C_n^m\equiv C_a^b\times C_c^d \pmod p CnmCab×Ccd(modp)


例题

洛谷P3807 【模板】卢卡斯定理/Lucas 定理

根据上述方法直接做即可。

code

#include<bits/stdc++.h>
using namespace std;
long long p;
long long jc[100005],ny[100005];
long long mi(long long t,long long v){
	if(v==0) return 1;
	long long re=mi(t,v/2);
	re=re*re%p;
	if(v&1) re=re*t%p;
	return re;
}
long long C(long long n,long long m){
	if(n<m) return 0;
	return jc[n]*ny[m]%p*ny[n-m]%p;
}
long long lucas(long long n,long long m){
	if(n<m) return 0;
	if(m==0) return 1;
	return C(n%p,m%p)*lucas(n/p,m/p)%p;
}
int main()
{
	int t;
	long long n,m,a,b;
	scanf("%d",&t);
	while(t--){
		scanf("%lld%lld%lld",&a,&b,&p);
		n=a+b;m=a;
		jc[0]=1;
		for(int i=1;i<p;i++) jc[i]=jc[i-1]*i%p;
		ny[p-1]=mi(jc[p-1],p-2);
		for(int i=p-2;i>=0;i--) ny[i]=ny[i+1]*(i+1)%p;
		printf("%lld\n",lucas(n,m));
	}
	return 0;
}
  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值