1. 智能客服的痛点与RPA+AI的解决方案
传统客服系统面临以下挑战:
-
重复性问题多:80%的客服咨询是常见问题(如订单查询、退换货政策)
-
人力成本高:需要7×24小时在线响应
-
响应速度慢:高峰期用户等待时间长
火语言RPA + ChatGPT 的智能组合可以:
✅ 自动识别用户问题(文本/邮件/聊天消息)
✅ 调用AI生成精准回复
✅ 多平台自动发送(微信、钉钉、邮件、客服系统)
✅ 无缝对接企业数据库(订单、物流信息实时查询)
2. 系统架构设计
核心组件
模块 | 功能说明 | 技术实现 |
---|---|---|
消息接收 | 获取用户咨询(微信/邮件/网页表单) | 火语言RPA消息监听组件 |
意图识别 | 判断用户问题类型 | ChatGPT分类 + 关键词匹配 |
知识库查询 | 检索产品/订单数据 | RPA对接企业数据库/ERP |
回复生成 | 生成自然语言回复 | ChatGPT API调用 |
消息发送 | 自动回复用户 | RPA操作微信/邮件/客服系统 |
人工接管 | 复杂问题转人工 | 预设阈值触发通知 |
3. 实战搭建:5步实现智能客服
步骤1:环境准备
-
火语言RPA:下载安装
-
ChatGPT API:申请OpenAI或国内大模型API(如文心一言、讯飞星火)
-
测试账号:准备微信企业号/钉钉/邮箱等测试环境
步骤2:消息监听配置
以微信客服消息为例:
-
使用火语言RPA的 「微信自动化」组件
-
设置监听规则:
plaintext
复制
WHEN 收到新消息 THEN IF 消息来源=客服会话 提取消息内容 → 存储到变量user_question
-
异常处理:消息获取失败时重试3次
步骤3:智能问答引擎
方案A:直接调用ChatGPT
python
复制
# 伪代码示例(实际使用火语言RPA的HTTP请求组件) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role":"user","content":user_question}] ) reply_text = response.choices[0].message.content
方案B:混合模式(精准控制+AI生成)
-
先匹配预设问答库(如订单查询→触发数据库查询)
-
未匹配时调用ChatGPT生成回复
-
敏感词过滤(使用RPA的 「文本审核」组件)
步骤4:自动回复执行
-
微信/钉钉:通过RPA模拟操作发送消息
-
邮件:使用SMTP组件自动回复
-
网页客服:直接调用平台API
步骤5:人工接管机制
设置自动转人工规则:
plaintext
复制
IF 用户输入包含"转人工" OR ChatGPT置信度<80% OR 问题涉及退款/投诉 THEN 发送通知给值班客服 回复用户:"正在为您转接人工客服,请稍候..."
4. 关键优化技巧
1. 知识库冷启动
-
导入历史客服QA记录(Excel/CSV)
-
使用ChatGPT自动生成相似问题扩展(数据增强)
2. 多轮对话支持
-
用RPA变量存储对话上下文
-
示例流程:
plaintext
复制
用户问:"订单状态" → 系统反问:"请提供订单号" → 用户回复:"123456" → 系统查询后返回结果
3. 数据安全防护
-
敏感信息脱敏(如手机号→18******90)
-
本地化部署大模型(可选企业版方案)
4. 效果监控看板
-
自动统计:响应时间、解决率、用户满意度
-
生成日报(RPA自动发送给管理员)
5. 效果对比
指标 | 传统客服 | RPA+AI客服 |
---|---|---|
响应速度 | 2-5分钟 | 5-10秒 |
人力成本 | 5人/班次 | 1人监管 |
准确率 | 85% | 92%(持续优化) |
可扩展性 | 低 | 随时添加新知识 |
6. 行业应用案例
电商行业
-
自动回复:订单查询、物流跟踪、退换货政策
-
促销期流量高峰应对(日均处理10万+咨询)
金融行业
-
合规性回答:利率计算、开户流程
-
风险问题自动拦截(如诈骗话术识别)
教育行业
-
24小时课程咨询
-
自动发送学习资料链接
7. 快速开始建议
-
免费试用:火语言RPA社区版 + ChatGPT API免费额度