梅森公式的推导(篇一):认识信号流图
写在前:
本篇是《梅森公式的推导》的篇一,基础知识部分。介绍了信号流图的基本概念和简单形式。篇二梅森公式的形式和应用介绍了梅森公式,篇三尝试了梅森公式的推导和探究。
信号流图是由节点和支路组成的信号传递网络。系统元件的传递函数可以由连接两个节点的有向支路表示。如图1。
节点表示系统中的变量。
连接两个节点的支路相当于单向乘法器:方向由箭头表示;乘法运算因子(传递函数或增益,可正可负)置于相应的支路上。
图2中可体现如下关系式: y = { e = a H 1 + b H 2 c = e H 3 = ( a H 1 + b H 2 ) H 3 d = e H 4 = ( a H 1 + b H 2 ) H 4 y = \left\{ \begin{array}{ll} e=aH_1+bH_2\\ c=eH_3=(aH_1+bH_2)H_3\\ d=eH_4=(aH_1+bH_2)H_4\\ \end{array} \right. y=⎩⎨⎧e=aH1+bH2c=eH3=(aH1+bH2)H3d=eH4=(aH1+bH2)H4
节点有三种类型:
1)输入节点(源点):仅有输出支路,它一般表示系统的输入变量,如图2中的节点 a 和 b a和b a和b。
2)输出节点(肼点):仅有输入支路,它一般表示系统的输出变量,如图2中的节点 c 和 d c和d c和d。
3)混合节点,既有输入支路又有输出支路的节点称为混合节点,它一般表示相加点、分支点、接点。如图2中的节点 e e e。
通路:
从某一节点开始沿支路箭头方向经过各相连支路到另一节点所构成的路径称为通路。通路中各支路增益的乘积叫做通路增益。如通路 a — H 1 — e — H 4 — d a—H_1—e—H_4—d a—H1—e—H4—d是节点 a 和 d a和d a和d之间的通路。
前向通路:
从输入节点开始并终止于输出节点且与其它节点相交于不多于一次的通路。该通路的各增益乘积称为前向通路增益。如通路 a — H 1 — e — H 4 — d a—H_1—e—H_4—d a—H