pytorch快速上手之二_排除计算图

本文介绍了PyTorch中`torch.no_grad()`的使用,它用于节省内存,通过设置tensor的`grad_require`为False来避免不必要的梯度计算。同时,文章还提及了`model.zero_grad()`的作用,用于清空模型参数的梯度,确保每次反向传播时只保留最后一步的导数值。
摘要由CSDN通过智能技术生成

GPU确实快,但是显存太小不够跑别人的代码时,可以把一些操作简化。如:原模型中使用了预训练模型Bert,且对Bert微调,如果实在跑不动,可以改为不微调Bert,先跑起来再说。

一 with torch.no_grad()

https://www.jianshu.com/p/1cea017f5d11
https://blog.csdn.net/weixin_43178406/article/details/89517008

作用:节省内存
关键概念:grad_require requires_grad、grad_fn
说明:
  1. 什么样的tensor可以调用backward()方法【即可以主动求导】?
    grad_fn 不为None的tensor
  2. 什么样的tensor存在grad属性【即被求导】?
    grad_require 为 True的tensor
  3. 什么样的tensor的grad_fn不为None?
    计算该tensor的表达式中,存在参数的grad_require不为false
注意:
  1. tensor的grad_require默认为false;grad_require为true时,tensor的grad属性保存上次被求导时的导数值;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值